Hepatitis C virus (HCV) infection affects an estimated 185 million people worldwide, with chronic infection often leading to liver cirrhosis and hepatocellular carcinoma. Although HCV is curable, there is an unmet need for the development of effective and affordable treatment options. Through a cell-based high-throughput screen, we identified chlorcyclizine HCl (CCZ), an over-the-counter drug for allergy symptoms, as a potent inhibitor of HCV infection. CCZ inhibited HCV infection in human hepatoma cells and primary human hepatocytes. The mode of action of CCZ is mediated by inhibiting an early stage of HCV infection, probably targeting viral entry into host cells. The in vitro antiviral effect of CCZ was synergistic with other anti-HCV drugs, including ribavirin, interferon-α, telaprevir, boceprevir, sofosbuvir, daclatasvir, and cyclosporin A, without significant cytotoxicity, suggesting its potential in combination therapy of hepatitis C. In the mouse pharmacokinetic model, CCZ showed preferential liver distribution. In chimeric mice engrafted with primary human hepatocytes, CCZ significantly inhibited infection of HCV genotypes 1b and 2a, without evidence of emergence of drug resistance, during 4 and 6 weeks of treatment, respectively. With its established clinical safety profile as an allergy medication, affordability, and a simple chemical structure for optimization, CCZ represents a promising candidate for drug repurposing and further development as an effective and accessible agent for treatment of HCV infection.
Recently, we reported that chlorcyclizine (CCZ, Rac-2), an over-the-counter antihistamine piperazine drug, possesses in vitro and in vivo activity against hepatitis C virus. Here, we describe structure–activity relationship (SAR) efforts that resulted in the optimization of novel chlorcyclizine derivatives as anti-HCV agents. Several compounds exhibited EC50 values below 10 nM against HCV infection, cytotoxicity selectivity indices above 2000, and showed improved in vivo pharmacokinetic properties. The optimized molecules can serve as lead preclinical candidates for the treatment of hepatitis C virus infection and as probes to study hepatitis C virus pathogenesis and host–virus interaction.
Background Direct-acting antivirals (DAAs) have greatly improved the treatment of HCV infection. To improve response and prevent resistance, combination regimens have been the focus of clinical development. Regimens are often first assessed in vitro, with most combination studies to date using subgenomic replicon systems, which do not replicate the complete HCV life cycle and preclude study of entry and assembly inhibitors. Infectious full-length HCV systems have been developed and are being used to test drug efficacy. Methods Using cell-based HCV Con1b replicon and an infectious full-length HCV (HCVcc-Luc) infection system, we systematically tested the synergy, additivity or antagonism of combinations of protease, NS5A and nucleotide NS5B inhibitor classes as well as the combination of these DAAs with host-targeting agent cyclosporin A or non-antibody entry inhibitor (S)-chlorcyclizine. Two computational software packages, MacSynergyII and CalcuSyn, were used for data analysis. Results Combinations between different classes showed good consistency across the two viral assay systems and two software platforms. Combinations between NS5A and nucleotide NS5B inhibitors were synergistic, while combinations of protease inhibitors with the other two classes were additive to slightly antagonistic. As expected, combinations of antivirals of the same class were additive. Combination studies between these DAA classes and cyclosporin A or (S)-chlorcyclizine demonstrated additive to synergistic effects and highly synergistic effects, respectively. Combinations of these drugs did not show any added or unexpected cytotoxicity. Conclusions Our results show that in vitro combination studies of anti-HCV DAAs in the HCVcc system may provide useful guidance for drug combination designs in clinical studies. We also demonstrate that these DAAs in combination with host-targeting agents or entry inhibitors may improve HCV treatment response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.