BRAF mutations have been shown to occur at a high frequency in melanoma and thyroid cancer, but also at lower frequencies in hematological malignancies. To assess the potential role of BRAF, we have sequenced exons 11 and 15 of BRAF in 138 cases with chronic lymphocytic leukemia (CLL) and 32 cases of B-cell prolymphocytic leukemia (B-PLL). We found an incidence of BRAF mutations of 2.8% in CLL (4/138), while no cases with B-PLL showed BRAF mutations. The analysis of a cohort of patients with fludarabine-refractory disease (n = 87) showed no increase in the mutation incidence, suggesting that this mutation is not selected for during the disease progression. A limited analysis of the effect of BRAF inhibition in primary CLL cells showed no cell death induction in CLL samples with and without BRAF mutations. Our analysis suggests that BRAF mutations occur at a low frequency in CLL. The pharmacological inhibition of MEK/ERK signaling using the mutant BRAF inhibitor PLX4720 showed no effect on viability in vitro in CLL cases.
Targeted therapy is revolutionizing the treatment of cancers, but resistance evolves against these therapies and derogates their success. The phosphatidylinositol 3-kinase delta (PI3K-δ) inhibitor idelalisib has been approved for treatment of chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma, but the mechanisms conferring resistance in a subset of patients are unknown. Here, we modeled resistance to PI3K-δ inhibitor in vivo using a serial tumor transfer and treatment scheme in mice. Whole-exome sequencing did not identify any recurrent mutation explaining resistance to PI3K-δ inhibitor. In the murine model, resistance to PI3K-δ inhibitor occurred as a result of a signaling switch mediated by consistent and functionally relevant activation of insulin-like growth factor 1 receptor (IGF1R), resulting in enhanced MAPK signaling in the resistant tumors. Overexpression of IGF1R in vitro demonstrated its prominent role in PI3K-δ inhibitor resistance. IGF1R upregulation in PI3K-δ inhibitor–resistant tumors was mediated by functional activation and enhanced nuclear localization of forkhead box protein O1 transcription factors and glycogen synthase kinase 3β. In human CLL, high IGF1R expression was associated with trisomy 12. CLL cells from an idelalisib-treated patient showed decreased sensitivity to idelalisib in vitro concomitant with enhanced MAPK signaling and strong upregulation of IGF1R upon idelalisib exposure. Thus, our results highlight that alternative signaling cascades play a predominant role in the resistance and survival of cancer cells under PI3K-δ inhibition. We also demonstrate that these pathway alterations can serve as therapeutic targets, because inhibition of IGF1R offered efficacious salvage treatment of PI3K-δ inhibitor–resistant tumors in vitro and in vivo.
Chromothripsis is a recently discovered form of genomic instability, characterized by tens to hundreds of clustered DNA rearrangements resulting from a single dramatic event. Telomere dysfunction has been suggested to play a role in the initiation of this phenomenon, which occurs in a large number of tumor entities. Here, we show that telomere attrition can indeed lead to catastrophic genomic events, and that telomere patterns differ between cells analyzed before and after such genomic catastrophes. Telomere length and telomere stabilization mechanisms diverge between samples with and without chromothripsis in a given tumor subtype. Longitudinal analyses of the evolution of chromothriptic patterns identify either stable patterns between matched primary and relapsed tumors, or loss of the chromothriptic clone in the relapsed specimen. The absence of additional chromothriptic events occurring between the initial tumor and the relapsed tumor sample points to telomere stabilization after the initial chromothriptic event which prevents further shattering of the genome.Chromothripsis is a recently discovered form of genome instability, whereby one or a few chromosomes are affected by tens to hundreds of clustered DNA rearrangements. 1,2 Localized chromosome shattering occurs as a one-time catastrophic genomic event, followed by inaccurate repair of the derivative fragments. 3,4 This phenomenon has been observed in 2-3% of all cancers, across various tumor types, and has been associated with poor prognosis in certain entities. 2,5 Chromothripsis is thought to promote, and in some cases perhaps even cause, cancer development, since it can lead to the loss of tumor suppressor genes, to the formation of oncogenic fusions and to oncogene amplification. 1,2 Several features in tumor cells have been linked to chromothripsis, which is presumed to be a context-dependent event. Notably, we reported an association of chromothripsis with TP53 mutation in subsets of medulloblastoma and acute myeloid leukemia. 2 However, the precise genomic context, the trigger(s) for the DNA double-strand breaks as well as the mechanistic basis of the shattering and repair process are currently unknown. Several nonexclusive mechanisms have been proposed, among which are DNA damage in micronuclei, 6 premature chromosome condensation, breakage-fusion-bridge (BFB) cycles and telomere dysfunction. 2,7,8 Telomeres are essential structures for genomic stability. 9,10 These specialized nucleoprotein complexes stabilize chromosome ends by protecting them from end-to-end fusions and DNA degradation. In humans, telomeres are comprized largely of (TTAGGG)n tandem repeats associated with capping proteins, which constitute the shelterin complex. Telomeric repeat sequences are added by the telomerase enzyme,
Parkinson’s disease is one of the most common neurodegenerative disorders of the elderly and ageing hence described to be a major risk factor. Telomere shortening as a result of the inability to fully replicate the ends of linear chromosomes is one of the hallmarks of ageing. The role of telomere dysfunction in neurological diseases and the ageing brain is not clarified and there is an ongoing discussion whether telomere shortening is linked to Parkinson’s disease. Here we studied a mouse model of Parkinson’s disease (Thy-1 [A30P] α-synuclein transgenic mouse model) in the background of telomere shortening (Terc knockout mouse model). α-synuclein transgenic mice with short telomeres (αSYNtg/tg G3Terc-/-) developed an accelerated disease with significantly decreased survival. This accelerated phenotype of mice with short telomeres was characterized by a declined motor performance and an increased formation of α-synuclein aggregates. Immunohistochemical analysis and mRNA expression studies revealed that the disease end-stage brain stem microglia showed an impaired response in αSYNtg/tg G3Terc-/- microglia animals. These results provide the first experimental data that telomere shortening accelerates α-synuclein pathology that is linked to limited microglia function in the brainstem.Electronic supplementary materialThe online version of this article (doi:10.1186/s40478-016-0364-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.