We present an ample description of a socially compliant mobile robotic platform, which is developed in the EU-funded project SPENCER. The purpose of this robot is to assist, inform and guide passengers in large and busy airports. One particular aim is to bring travellers of connecting flights conveniently and efficiently from their arrival gate to the passport control. The uniqueness of the project stems from the strong demand of service robots for this application with a large potential impact for the aviation industry on one side, and on the other side from the scientific advancements in social robotics, brought forward and achieved in SPENCER. The main contributions of SPENCER are novel methods to perceive, learn, and model human social behavior and to use this knowledge to plan appropriate actions in realtime for mobile platforms. In this paper, we describe how the project advances the fields of detection and tracking of individuals and groups, recognition of human social relations and activities, normative human behavior learning, socially-aware task and motion planning, learning socially annotated maps, and conducting empirical experiments to assess socio-psychological effects of normative robot behaviors.
International audience— For mobile robots which operate in human pop-ulated environments, modeling social interactions is key to understand and reproduce people's behavior. A promising approach to this end is Inverse Reinforcement Learning (IRL) as it allows to model the factors that motivate people's actions instead of the actions themselves. A crucial design choice in IRL is the selection of features that encode the agent's context. In related work, features are typically chosen ad hoc without systematic evaluation of the alternatives and their actual impact on the robot's task. In this paper, we introduce a new software framework to systematically investigate the effect features and learning algorithms used in the literature. We also present results for the task of socially compliant robot navigation in crowds, evaluating two different IRL approaches and several feature sets in large-scale simulations. The results are benchmarked according to a proposed set of objective and subjective performance metrics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.