Abstract-Public space utilization is crucial for urban developers to understand how efficient a place is being occupied in order to improve existing or future infrastructures. In a smart cities approach, implementing public space monitoring with Internetof-Things (IoT) sensors appear to be a viable solution. However, choice of sensors often is a challenging problem and often linked with scalability, coverage, energy consumption, accuracy, and privacy. To get the most from low cost sensor with aforementioned design in mind, we proposed data processing modules for capturing public space utilization with Renewable Wireless Sensor Network (RWSN) platform using pyroelectric infrared (PIR) and analog sound sensor. We first proposed a calibration process to remove false alarm of PIR sensor due to the impact of weather and environment. We then demonstrate how the sounds sensor can be processed to provide various insight of a public space. Lastly, we fused both sensors and study a particular public space utilization based on one month data to unveil its usage.
Understanding how people move in the urban area is important for solving urbanization issues, such as traffic management, urban planning, epidemic control, and communication network improvement. Leveraging recent availability of large amounts of diverse crowdsensed data, many studies have made contributions to this field in various aspects. They need proper review and summary. In this paper, therefore, we first review these recent studies with a proper taxonomy with corresponding examples. Then, based on the experience learnt from the studies, we provide a comprehensive tutorial for future research, which introduces and discusses popular crowdsensed data types, different human mobility subjects, and common data preprocessing and analysis methods. Special emphasis is made on the matching between data types and mobility subjects. Finally, we present two research projects as case studies to demonstrate the entire process of understanding urban human mobility through crowdsensed data in city-wide scale and building-wide scale respectively. Beyond demonstration purpose, the two case studies also make contributions to their category of certain crowdsensed data type and mobility subject.
Understanding crowd behaviors in a large social event is crucial for event management. Passive WiFi sensing, by collecting WiFi probe requests sent from mobile devices, provides a better way to monitor crowds compared with people counters and cameras in terms of free interference, larger coverage, lower cost, and more information on people's movement. In existing studies, however, not enough attention has been paid to the thorough analysis and mining of collected data. Especially, the power of machine learning has not been fully exploited. In this paper, therefore, we propose a comprehensive data analysis framework to fully analyze the collected probe requests to extract three types of patterns related to crowd behaviors in a large social event, with the help of statistics, visualization, and unsupervised machine learning. First, trajectories of the mobile devices are extracted from probe requests and analyzed to reveal the spatial patterns of the crowdsâȂŹ movement. Hierarchical agglomerative clustering is adopted to find the interconnections between different locations. Next, k-means and k-shape clustering algorithms are applied to extract temporal visiting patterns of the crowds by days and locations, respectively. Finally, by combining with time, trajectories are transformed into spatiotemporal patterns, which reveal how trajectory duration changes over the length and how the overall trends of crowd movement change over time. The proposed data analysis framework is fully demonstrated using real-world data collected in a large social event. Results show that one can extract comprehensive patterns from data collected by a network of passive WiFi sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.