Whereas hypertonic saline-dextran (HSD, 7.5% NaCl in 6% D70) improves cardiac contractile function after burn trauma, the mechanisms of HSD-related cardioprotection remain unclear. We recently showed that cardiomyocytes secrete tumor necrosis factor-alpha (TNF-alpha), a response that was enhanced by burn trauma. This study addressed the question: does HSD modulate cardiac contraction/relaxation by altering cardiomyocyte TNF-alpha secretion? Wistar-Furth rats (325 g) were given a burn injury over 40% of the total body surface area and were then randomized to receive a bolus of either isotonic saline or HSD (4 ml/kg, n = 14 rats/group). Sham burn rats were given either isotonic saline or HSD (n = 14 rats/group) to provide appropriate controls for the two burn groups. Hearts were isolated 24 h postburn for either Langendorff perfusion (n = 8 hearts/group) or to prepare cardiomyocytes (n = 6 hearts/group). Myocytes were stimulated with lipopolysaccharide (LPS) (0, 10, 25, or 50 microg for 18 h) to measure cytokine secretion. Burn trauma increased myocyte TNF-alpha and interleukin-1 beta and -6 secretion, exacerbated cytokine response to LPS stimulus, and impaired cardiac contraction. HSD treatment of burns decreased cardiomyocyte cytokine secretion, decreased responsiveness to LPS challenge with regard to cytokine secretion, and improved ventricular function. These data suggest that HSD mediates cardioprotection after burn trauma, in part, by downregulating cardiomyocyte secretion of inflammatory cytokines.
A previous burn injury alters myocardial inflammatory responses, predisposing the burn-injured subject to exaggerated inflammation, which correlates with greater myocardial dysfunction.
Our data suggest that the calcium antagonists used in this study provide cardioprotection by modulating several aspects of the overall inflammatory cascade rather than solely limiting cardiomyocyte accumulation of calcium.
This study was designed to examine the role of mitochondrial Ca2+ homeostasis in burn-related myocardial inflammation. We hypothesized that mitochondrial Ca2+ is a primary modulator of cardiomyocyte TNF-alpha, IL-1beta, and IL-6 responses to injury and infection. Ventricular myocytes were prepared by Langendorff perfusion of hearts from adult rats subjected to sham burn or burn injury over 40% of total body surface area to produce enzymatic (collagenase) digestion. Isolated cardiomyocytes were suspended in MEM, cell number was determined, and aliquots of myocytes from each experimental group were loaded with fura 2-AM (2 microg/ml) for 1) 45 min at room temperature to measure total cellular Ca2+, 2) 45 min at 30 degrees C followed by incubation at 37 degrees C for 2 h to eliminate cytosolic fluorescence, and 3) 20 min at 37 degrees C in MnCl2 (200 microM)-containing buffer to quench cytosolic fura 2-AM signal. In vitro studies included preparation of myocytes from control hearts and challenge of myocytes with LPS or burn serum (BS), which have been shown to increase cytosolic Ca2+. Additional aliquots of myocytes were challenged with LPS or BS with or without a selective inhibitor of mitochondrial Ca2+, ruthenium red (RR). All cells were examined on a stage-inverted microscope that was interfaced with the InCyt Im2 fluorescence imaging system. Heat treatment or MnCl2 challenge eliminated myocyte cytosolic fluorescence, whereas cells maintained at room temperature retained 95% of their initial fluorescence. Compared with Ca2+ levels measured in sham myocytes, burn trauma increased cytosolic Ca2+ from 90 +/- 3 to 293 +/- 6 nM (P < 0.05) and mitochondrial Ca2+ from 24 +/- 1 to 75 +/- 2 nM (P < 0.05). LPS (25 microg/5 x 10(4) cells) or BS (10% by volume) challenge for 18 h increased cardiomyocyte cytosolic and mitochondrial Ca2+ and promoted myocyte secretion of TNF-alpha, IL-1beta, and IL-6. RR pretreatment decreased LPS- and BS-related rise in mitochondrial Ca2+ and cytokine secretion but had no effect on cytosolic Ca2+. BS challenge in perfused control hearts impaired myocardial contraction/relaxation, and RR pretreatment of hearts prevented BS-related myocardial contractile dysfunction. Our data suggest that a rise in mitochondrial Ca2+ is one modulator of myocardial inflammation and dysfunction in injury states such as sepsis and burn trauma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.