Sleep apnea is a common sleep disorder that interferes with the breathing of a person. During sleep, people can stop breathing for a moment that causes the body lack of oxygen that lasts for several seconds to minutes even until the range of hours. If it happens for a long period, it can result in more serious diseases, e.g. high blood pressure, heart failure, stroke, diabetes, etc. Sleep apnea can be prevented by identifying the indication of sleep apnea itself from ECG, EEG, or other signals to perform early prevention. The purpose of this study is to build a classification model to identify sleep disorders from the Heart Rate Variability (HRV) features that can be obtained with Electrocardiogram (ECG) signals. In this study, HRV features were processed using several classification methods, i.e. ANN, KNN, N-Bayes and SVM linear Methods. The classification is performed using subject-specific scheme and subject-independent scheme. The simulation results show that the SVM method achieves higher accuracy other than three other methods in identifying sleep apnea. While, time domain features shows the most dominant performance among the HRV features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.