In the current socio-economic situation, smart products are essential for daily life. Energy is a very much related matter to smart products. To buy a smart product, people mostly care about that smart product’s energy consumption and the price. There is always a tug-of-war between the price of the product and the energy consumption of that product. An energy-efficient smart production system is described in this study where the production is variable, and in the out-of-control state, it produces defective products. For prevention of the out-of-control state, preventive maintenance and restoration are used within the smart production system. The rework policy helps to profit from the defective products, and the warranty policy helps to motivate the users. This model applies an improved strategy to the production process and develops a new product that needs to be marketed. Finally, this model plays a vital role in creating smart products with moderate energy consumption at a minimal cost. The mathematical model is a non-linear profit maximization problem that is solved both analytically and numerically. The classical optimization technique founds optimum solutions. Different numerical examples and sensitivity analysis with graphs are used to validate the mathematical model.
The present study focuses on a single-vendor, single-buyer supply chain model for a single type of product with upgraded service provided to the buyer by the vendor. Vendors often increase their profit by providing a lower quality of a particular product. In this study, an advanced supply chain model is developed to increase service in the presence of an unreliable vendor and an online-to-offline (O2O) channeling system. The vendor provides lower quality items to the customer, even though they had committed to providing a certain quality product, in order to increase their profit. For more realistic results, demand is considered to be price-, quality-, and service-dependent. To advertise and sell the products, the manufacturer uses an online system, which the buyer also uses to choose and order the product, where the particular product is delivered to the customer by a third (offline) party; that is, the concept of an O2O retail channel is adopted to improve the service level of the supply chain management (SCM). To control the out-of-control state and improve the production quality, investment is used. Contrary to the literature, service is considered to be constrained, which makes the model more realistic. A classical optimization technique is used to solve the model analytically and a two-echelon supply chain model is obtained under the advanced O2O retail channel, along with optimized profit, shipment volume, selling price, ordering cost, service, back-ordered price discount, lead time, and safety factor values. Some numerical examples and a sensitivity analysis of the key parameters are provided, along with graphical representation, in order to validate the model.
This paper considers an imperfect production system to obtain the optimal production run time and inspection policy. Contrary to the existing literature this model considerers that product inspection performs at any arbitrary time of the production cycle and after the inspection, all defective products produced until the end of the production run are fully reworked. Due to some misclassification during inspection, from the inspector's side two types of inspection errors as Type I and Type II are considered to make the model more realistic rather than existing models. Defective items, found by the inspector, are salvaged at some cost before being shipped. Non-inspected defective items are passed to customers with free minimal repair warranty. The model gives three special cases, where it is found that this model converges over the exiting literature. Some numerical examples along with graphical representations are provided to illustrate the proposed model with comparison with the existing models. Sensitivity analysis of the optimal solution with respect to key parameters of the model has been carried out and the implications are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.