We report the influence of glassing solvent deuteration and Gd 3+ doping on 13 C dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) performed on [1-13 C] sodium acetate at B 0 ¼ 5 T and 1.2 K. Our data reveal that at 5 T, glassing solvent deuteration still results in a 40% improvement of the 13 C DNP signal when a large electron spin resonance (ESR) linewidth 4-oxo-TEMPO free radical is used, but results in a 60% decrease of the DNP signal in the case of a sample doped with small ESR linewidth trityl OX063. An addition of a trace amount of the Gd 3+ complex Gd-HP-DO3A led to a negligible slight decrease on the 13 C polarization TEMPO-doped sample, but is still relatively beneficial for the trityl-doped sample with 30% improvement of the DNP-enhanced 13 C polarization. These findings indicate that while these DNP optimization steps are still valid at 5 T, the effects are not as pronounced as observed in 13 C DNP at B 0 ¼ 3.35 T. These DNP results at 5 T are discussed thermodynamically within the framework of the thermal mixing model of DNP.
Proper selection of silane precursors and polymer reinforcements yields more durable and stronger silica aerogels. This paper focuses on the use of silane-end-capped urethane prepolymer and chain-extended polyurethane for reinforcement of silica aerogels. The silane end groups were expected to participate in silica network formation and uniquely determine the amounts of urethanes incorporated into the aerogel network as reinforcement. The aerogels were prepared by one-step sol-gel process from mixed silane precursors tetraethoxysilane, aminopropyltriethoxysilane (APTES), and APTES-end-capped polyurethanes. The morphology and mechanical and surface properties of the resultant aerogels were investigated in addition to elucidation of chemical structures by solid-state (13)C and (29)Si nuclear magnetic resonance. Modification by 10 wt % APTES-end-capped chain-extended polyurethane yielded a 5-fold increase in compressive modulus and 60% increase in density. APTES-end-capped chain-extended polyurethane was found to be more effective in enhancement of mechanical properties and reduction of polarity.
We report the synthesis, characterization, and catalytic CO2 reduction activity of two LMn(CO)3Br complexes with carbene-pyridine-carbene pincer ligands, [MnCNCMe]Br 1 and [MnCNCBn]Br (Bn = benzyl) 2. X-ray crystallography reveals an octahedral coordination environment with an outer sphere Br anion for 1. Catalyst 2 performs the reduction of CO2 to CO at 100 mV more positive potential with similar current densities as 1. We hypothesize the bulkier benzyl arms on the pincer hinder formation of a dimer. They also alter the wingtip electronics, enabling operation at a lower overpotential. We use normal pulse voltammetry and diffusion ordered spectroscopy to quantify a 1e– reduction per manganese center at the catalytic onset. We now show turnover even in the absence of added protons..
This study evaluated polyhedral oligomeric silsesquioxane (POSS) molecules as useful, multifunctional reinforcing agents of silica aerogels. Silica aerogels have low-density and high surface area, although their durability is often compromised by the inherent fragility and strong moisture absorption behavior of the silica networks. POSS molecules carrying phenyl, iso-butyl, and cyclohexyl organic side groups, and several Si-OH functionalities were incorporated into silica networks via reactions between Si-OH functionalities in POSS molecules and silanes. Solid state (13)C and (29)Si NMR spectra established that greater than 90% of POSS molecules grafted onto silica networks and led to an increase in fractal dimensions. An almost 6-fold increase in compressive modulus was achieved with less than 5 wt % trisilanol phenyl POSS, and a 50-fold decrease in polarity with negligible changes in density were seen in aerogels modified with less than 5 wt % trisilanol isobutyl POSS.
In this work, a new antifouling silica hydrogel was developed for potential biomedical applications. A zwitterionic polymer, poly(carboxybetaine methacrylate) (pCBMA), was produced via atom-transfer radical polymerization and was appended to the hydrogel network in a two-step acid-base-catalyzed sol-gel process. The pCBMA silica aerogels were obtained by drying the hydrogels under supercritical conditions using CO(2). To understand the effect of pCBMA on the gel structure, pCBMA silica aerogels with different pCBMA contents were characterized using scanning electron microscopy (SEM), nuclear magnetic resonance (NMR) spectroscopy, and the surface area from Brauner-Emmet-Teller (BET) measurements. The antifouling property of pCBMA silica hydrogel to resist protein (fibrinogen) adsorption was measured using enzyme-linked immunosorbent assay (ELISA). SEM images revealed that the particle size and porosity of the silica network decreased at low pCBMA content and increased at above 33 wt % of the polymer. The presence of pCBMA increased the surface area of the material by 91% at a polymer content of 25 wt %. NMR results confirmed that pCBMA was incorporated completely into the silica structure at a polymer content below 20 wt %. A protein adsorption test revealed a reduction in fibrinogen adsorption by 83% at 25 wt % pCBMA content in the hydrogel compared to the fibrinogen adsorption in the unmodified silica hydrogel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.