To optimize a laser ignition scheme, absorption rate measurements and Schlieren visualizations are performed on dual-pulse laser-induced breakdowns (LIBs) at incident energies from 50 mJ to 200 mJ and pulse intervals that range from 20 ns to 250 μs in quiescent air at atmospheric pressure. For comparison, experiments on single-pulse LIBs are also conducted. The shock loss is determined using a semi-empirical model (Jones' model), and quantitative information on the spatial distribution of the hot plume is extracted from Schlieren images using in-house code. The results reveal that multi-location laser ignition can be achieved without reducing the energy absorption or strengthening the shock loss only when the energy of each laser pulse exceeds 200 mJ. This requirement is because the absorption rate of single-pulse LIB decreases significantly when the laser energy is lower than 200 mJ, and the shock loss of single-pulse LIB invariably accounts for approximately 80% of the absorbed laser energy at various incident energies. Compared with single-pulse LIB, dual-pulse LIB with a pulse interval of less than 200 ns is slightly inferior in terms of energy absorption and shock loss; however, the advantages of a larger initial plasma volume and lower energy dissipation can compensate for this deficiency. Therefore, dual-pulse laser ignition is a promising alternative to single-pulse laser ignition. Moreover, ignition reliability can be enhanced by initially releasing the laser pulse with higher energy when the energies of the successive pulses are not the same because of higher energy absorption and lower shock loss. In addition, the spatial distribution of the resulting hot plume is relatively centralized, which helps to reduce energy and radical dissipation. However, a pulse interval longer than 200 ns should be avoided for dual-pulse LIB because the laser energy cannot be utilized efficiently.
Porcine epidemic diarrhea virus (PEDV) is the main causative agent of porcine diarrhea, which has resulted in devastating damage to swine industry and become a perplexed global problem. PEDV infection causes lesions and clinical symptoms, and infected pigs often succumb to severe dehydration. If there is not a timely and effective method to control its infection, PEDV will spread rapidly across the whole swine farm. Therefore, preclinical identification of PEDV is of great significance for preventing the outbreak and spread of this disease. In this study, a functionalized nanoparticles-based PCR method (UNDP-PCR) specific for PEDV was developed through systematic optimization of functionalized magnetic beads and gold nanoparticles which were further used to specifically enrich viral RNA from the lysate of PEDV stool samples, forming a MMPs-RNA-AuNPs complex. Then, oligonucleotides specific for PEDV coated on AuNPs were eluted from the complex and were further amplified and characterized by PCR. The detection limitation of the established UNDP-PCR method for PEDV was 25 copies in per gram PEDV stool samples, which is 400-fold more sensitive than conventional RT-PCR for stool samples. The UNDP-PCR for PEDV exhibited reliable reproducibility and high specificity, no cross-reaction was observed with other porcine viruses. In 153 preclinical fecal samples, the positive detection rate of UNDP-PCR specific for PEDV (30.72%) was much higher than that of conventional RT-PCR (5.88%) and SYBR Green real-time RT-PCR. In a word, this study provided a RNA extraction and transcription free, rapid and economical method for preclinical PEDV infection, which showed higher sensitivity, specificity and reproducibility, and exhibited application potency for evaluating viral loads of preclinical samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.