Magnetic Resonance Imaging (MRI) is considered one of the most effective imaging techniques used in the medical field for both clinical investigation and diagnosis. This is due to the fact that MRI provides many critical features of the tissue including both physiological and chemical information. Rician noise affects MR images during acquisition thereby reducing the quality of the image and complicating the accurate diagnosis. In this paper, we propose a novel technique for MR image denoising using Deep Convolutional Neural Network (Deep CNN) and anisotropic diffusion (AD) which we will refer to as Deep CNN-AD. Watershed transform is then used to segment the tumorous portion of the denoised image. The proposed method is tested on the BraTS MRI datasets. The proposed denoising method produced better results compared to previous methods. As denoising process affect the segmentation process therefore better denoised images by proposed technique produced more accurate segmentation with an average Specificity of 99.85% and dice coefficient of 90.46% thus indicating better performance of proposed technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.