Blockchain has been regarded as a promising technology for Internet of Things (IoT), since it provides significant solutions for decentralized network which can address trust and security concerns, high maintenance cost problem, etc. The decentralization provided by blockchain can be largely attributed to the use of consensus mechanism, which enables peer-to-peer trading in a distributed manner without the involvement of any third party. This article starts from introducing the basic concept of blockchain and illustrating why consensus mechanism plays an indispensable role in a blockchain enabled IoT system. Then, we discuss the main ideas of two famous consensus mechanisms including Proof of Work (PoW) and Proof of Stake (PoS), and list their limitations in IoT. Next, two mainstream Direct Acyclic Graph (DAG) based consensus mechanisms, i.e., the Tangle and Hashgraph, are reviewed to show why DAG consensus is more suitable for IoT system than PoW and PoS. Potential issues and challenges of DAG based consensus mechanism to be addressed in the future are discussed in the last.
Blockchain has shown a great potential in Internet of Things (IoT) ecosystems for establishing trust and consensus mechanisms without involvement of any third party. Understanding the relationship between communication and blockchain as well as the performance constraints posing on the counterparts can facilitate designing a dedicated blockchainenabled IoT systems. In this paper, we establish an analytical model for the blockchain-enabled wireless IoT system. By considering spatio-temporal domain Poisson distribution, i.e., node geographical distribution in spatial domain and transaction arrival rate in time domain are both modeled as Poisson point process (PPP), we first derive the distribution of signalto-interference-plus-noise ratio (SINR), blockchain transaction successful rate as well as overall throughput. Based on the system model and performance analysis, we design an algorithm to determine the optimal full function node deployment for blockchain system under the criterion of maximizing transaction throughput. Finally, the security performance is analyzed in the proposed networks with three typical attacks. Solutions such as physical layer security are presented and discussed to keep the system secure under these attacks. Numerical results validate the accuracy of our theoretical analysis and optimal node deployment algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.