A spiking neural network (SNN) is considered a high-performance learning system that matches the digital circuits and presents higher efficiency due to the architecture and computation of spiking neurons. While implementing a SNN on a field-programmable gate array (FPGA), the gradient back-propagation through layers consumes a surprising number of resources. In this paper, we aim to realize an efficient architecture of SNN on the FPGA to reduce resource and power consumption. The multi-compartment leaky integrate-and-fire (MLIF) model is used to convert spike trains to the plateau potential in dendrites. We accumulate the potential in the apical dendrite during the training period. The average of this accumulative result is the dendritic plateau potential and is used to guide the updates of synaptic weights. Based on this architecture, the SNN is implemented on FPGA efficiently. In the implementation of a neuromorphic learning system, the shift multiplier (shift MUL) module and piecewise linear (PWL) algorithm are used to replace multipliers and complex nonlinear functions to match the digital circuits. The neuromorphic learning system is constructed with resources on FPGA without dataflow between on-chip and off-chip memories. Our neuromorphic learning system performs with higher resource utilization and power efficiency than previous on-chip learning systems.
IntroductionRecurrent spiking neural network (RSNN) performs excellently in spatio-temporal learning with backpropagation through time (BPTT) algorithm. But the requirement of computation and memory in BPTT makes it hard to realize an on-chip learning system based on RSNN. In this paper, we aim to realize a high-efficient RSNN learning system on field programmable gate array (FPGA).MethodsA presynaptic spike-driven plasticity architecture based on eligibility trace is implemented to reduce the resource consumption. The RSNN with leaky integrate-and-fire (LIF) and adaptive LIF (ALIF) models is implemented on FPGA based on presynaptic spike-driven architecture. In this architecture, the eligibility trace gated by a learning signal is used to optimize synaptic weights without unfolding the network through time. When a presynaptic spike occurs, the eligibility trace is calculated based on its latest timestamp and drives synapses to update their weights. Only the latest timestamps of presynaptic spikes are required to be stored in buffers to calculate eligibility traces.ResultsWe show the implementation of this architecture on FPGA and test it with two experiments. With the presynaptic spike-driven architecture, the resource consumptions, including look-up tables (LUTs) and registers, and dynamic power consumption of synaptic modules in the on-chip learning system are greatly reduced. The experiment results and compilation results show that the buffer size of the on-chip learning system is reduced and the RSNNs implemented on FPGA exhibit high efficiency in resources and energy while accurately solving tasks.DiscussionThis study provides a solution to the problem of data congestion in the buffer of large-scale learning systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.