The sclerotium of Wolfiporia cocos has been used as an edible mushroom and/or a traditional herbal medicine for centuries. W. cocos sclerotial formation is dependent on parasitism of the wood of Pinus species. Currently, the sclerotial development mechanisms of W. cocos remain largely unknown and the lack of pine resources limit the commercial production. The CAZymes (carbohydrate-active enzymes) play important roles in degradation of the plant cell wall to provide carbohydrates for fungal growth, development, and reproduction. In this study, the transcript profiles from W. cocos mycelium and 2-months-old sclerotium, the early stage of sclerotial growth, were specially analyzed using de novo sequencing technology. A total of 142,428,180 high-quality reads of mycelium and 70,594,319 high-quality reads of 2-months-old sclerotium were obtained. Additionally, differentially expressed genes from the W. cocos mycelium and 2-months-old sclerotium stages were analyzed, resulting in identification of 69 CAZymes genes which were significantly up-regulated during the early stage of sclerotial growth compared to that of in mycelium stage, and more than half of them belonged to glycosyl hydrolases (GHs) family, indicating the importance of W. cocos GHs family for degrading the pine woods. And qRT-PCR was further used to confirm the expression pattern of these up-regulated CAZymes genes. Our results will provide comprehensive CAZymes genes expression information during W. cocos sclerotial growth at the transcriptional level and will lay a foundation for functional genes studies in this fungus. In addition, our study will also facilitate the efficient use of limited pine resources, which is significant for promoting steady development of Chinese W. cocos industry.
In this paper, the dynamic problem of a rigid body colliding with an elastic rod is studied in some detail. Different contact theories for modeling impact responses are compared with experimental measurements. Based on an idea originally presented by Sears for collisions of two rods with rounded ends, a boundary approach combining Hertzian contact law and St. Venant's elastodynamics is developed to describe longitudinal waves in rods. It is shown that this boundary approach agrees very well with experimental results. For the simulation of long-term dynamic behavior after impact, a traditional rigid-body approach is advantageous because the elastic vibration of the rod will decay fast due to the structural damping and the elastic rod then moves like a rigid body. Hence, for modeling longitudinal impacts, it is suggested that both elastodynamics and rigid-body dynamics are combined into a two-timescale model. The short time behavior of wave propagation due to impacts is modeled using elastodynamics, and the state of the rigid-body mode is transferred to the rigid-body approach as the initial condition for the motion. The long-term behavior after impact is then computed using the rigid-body approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.