Relative orientation estimation between the hand and its fingers is important in many applications, such as virtual reality (VR), augmented reality (AR) and rehabilitation. It is still quite a big challenge to do the estimation by only exploiting inertial measurement units (IMUs) because of the integration drift that occurs in most approaches. When the hand is functionally used, there are many instances in which hand and finger tips move together, experiencing almost the same angular velocities, and in some of these cases, almost the same accelerations are measured in different 3D coordinate systems. Therefore, we hypothesize that relative orientations between the hand and the finger tips can be adequately estimated using 3D IMUs during such designated events (DEs) and in between these events. We fused this extra information from the DEs and IMU data with an extended Kalman filter (EKF). Our results show that errors in relative orientation can be smaller than five degrees if DEs are constantly present and the linear and angular movements of the whole hand are adequately rich. When the DEs are partially available in a functional water-drinking task, the orientation error is smaller than 10 degrees.
High-precision and fast relative positioning of a large number of mobile sensor nodes (MSNs) is crucial for smart industrial wireless sensor networks (SIWSNs). However, positioning multiple targets simultaneously in three-dimensional (3D) space has been less explored. In this paper, we propose a new approach, called Angle-of-Arrival (AOA) based Three-dimensional Multi-target Localization (ATML). The approach utilizes two anchor nodes (ANs) with antenna arrays to receive the spread spectrum signals broadcast by MSNs. We design a multi-target single-input-multiple-output (MT-SIMO) signal transmission scheme and a simple iterative maximum likelihood estimator (MLE) to estimate the 2D AOAs of multiple MSNs simultaneously. We further adopt the skew line theorem of 3D geometry to mitigate the AOA estimation errors in determining locations. We have conducted extensive simulations and also developed a testbed of the proposed ATML. The numerical and field experiment results have verified that the proposed ATML can locate multiple MSNs simultaneously with high accuracy and efficiency by exploiting the spread spectrum gain and antenna array gain. The ATML scheme does not require extra hardware or synchronization among nodes, and has good capability in mitigating interference and multipath effect in complicated industrial environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.