Needles, as some of the most widely used medical devices, have been effectively applied in human disease prevention, diagnosis, treatment, and rehabilitation. Thin 1D needle can easily penetrate cells/organs by generating highly localized stress with their sharp tips to achieve bioliquid sampling, biosensing, drug delivery, surgery, and other such applications. In this review, we provide an overview of multiscale needle fabrication techniques and their biomedical applications. Needles are classified as nanoneedles, microneedles and millineedles based on the needle diameter, and their fabrication techniques are highlighted. Nanoneedles bridge the inside and outside of cells, achieving intracellular electrical recording, biochemical sensing, and drug delivery. Microneedles penetrate the stratum corneum layer to detect biomarkers/bioelectricity in interstitial fluid and deliver drugs through the skin into the human circulatory system. Millineedles, including puncture, syringe, acupuncture and suture needles, are presented. Finally, conclusions and future perspectives for next-generation nano/micro/milli needles are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.