Concerns regarding reproducibility of resting-state functional magnetic resonance imaging (RfMRI) findings have been raised. Little is known about how to operationally define R-fMRI reproducibility and to what extent it is affected by multiple comparison correction strategies and sample size. We comprehensively assessed two aspects of reproducibility, test-retest reliability and replicability, on widely used R-fMRI metrics in both between-subject contrasts of sex differences and within-subject comparisons of eyes-open and eyes-closed (EOEC) conditions. We noted permutation test with Threshold-Free Cluster Enhancement (TFCE), a strict multiple comparison correction strategy, reached the best balance between family-wise error rate (under 5%) and test-retest reliability/replicability (e.g., 0.68 for test-retest reliability and 0.25 for replicability of amplitude of low-frequency fluctuations (ALFF) for between-subject sex differences, 0.49 for replicability of ALFF for within-subject EOEC differences). Although R-fMRI indices attained moderate reliabilities, they replicated poorly in distinct datasets (replicability < 0.3 for between-subject sex differences, < 0.5 for withinsubject EOEC differences). By randomly drawing different sample sizes from a single site, we found reliability, sensitivity and positive predictive value (PPV) rose as sample size increased. Small sample sizes (e.g., < 80 [40 per group]) not only minimized power (sensitivity < 2%), but also decreased the likelihood that significant results reflect "true" effects (PPV < 0.26) in sex differences. Our findings have implications for how to select multiple comparison correction strategies and highlight the importance of sufficiently large sample sizes in R-fMRI studies to enhance reproducibility. Hum Brain Mapp 39:300-318, 2018.V C 2017 Wiley Periodicals, Inc.
The research presented in this paper shows that Waste Electrical and Electronic Equipment (WEEE) issues associated with home appliances, such as TV sets, refrigerators, washing machines, air conditioners, and personal computers, are linked in the WEEE flow and recycling systems and are important to matters of public policy and regulation. In this paper, the sources and generation of WEEE in China are identified, and WEEE volumes are calculated. The results show that recycling capacity must increase if the rising quantity of domestic WEEE is to be handled properly. Simultaneously, suitable WEEE treatment will generate large volumes of secondary resources. Environmental problems caused by the existing recycling processes have been investigated in a case study. Problems mainly stem from open burning of plastic-metal parts and from precious metals leaching techniques that utilize acids.The existing WEEE flow at the national level was investigated and described. It became obvious that a considerable amount of obsolete items are stored in homes and offices and have not yet entered the recycling system. The reuse of used appliances has become a high priority for WEEE collectors and dealers because reuse generates higher economic profits than simple material recovery. The results of a cost analysis of WEEE flow shows that management and collection costs significantly influence current WEEE management.Heated discussions are ongoing in political and administrative bodies as to whether extended producer responsibilities policies are promoting WEEE recycling and management. This paper also discusses future challenges and strategies for WEEE management in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.