This paper addresses the difficult closure of a frozen wall in a coal mine shaft due to excessive seepage velocity in an aquifer when the aquifer is penetrated via the artificial freezing method. Based on hydrothermal coupling theory and considering the effect of decreased absolute porosity on seepage during the freezing process, a mathematical model of hydrothermal full-parameter coupling with a phase change is created. A shaft is used as a prototype, and COMSOL multiphysics finite element software is employed to perform a numerical simulation of the shaft freezing process at various stratum seepage velocities. The numerical simulation results are verified via a comparison with field measurement data. Based on the numerical simulation results, the impact of various underground water seepage velocities on the artificial frozen wall formation process with the seepage-temperature field coupling effect is analysed. Based on the analysis results, the recommended principles of the optimization design for a freezing plan are described as follows: first, the downstream area is closed to enable the water insulation effect, and second, the closure of the upstream area is expedited to reduce the total closure time of a frozen wall.
Tunnel Boring Machines (TBMs) are a cutting-edge excavating equipment, but are barely applied in underground coal mines. For TBM excavation projects involving the Zhangji coal mine, the surrounding rock properties, stress field, cross section geometry, as well as the excavation-induced stress path of TBM-excavated coal mine roadways are different from those of traditional tunnels or roadways. Consequently, traditional roadway supporting technologies and experiences cannot be relied on for this project. In order to research an appropriate supporting pattern for a TBM-excavated coal mine roadway, first of all, the constitutive model of roadway surrounding rocks was derived, and a rock failure criterion was proposed based on rock mechanical tests. Secondly, a three-dimension finite element model was established and computer simulations under three different supporting patterns were conducted. Stress redistribution, roadway convergence, and excavation damage zone ranges of surrounding rocks under three different support patterns were analyzed and an optimal support design of the TBM-excavated roadway was made based on simulation results. During roadway excavation, convergence gauge and rock bolt dynamometers were installed for monitoring roadway convergence and the axial forces of rock bolts. The in-situ monitoring results verified the validity of roadway supporting designs.
After roadway excavation, the deformation and failure of roadway surrounding rocks typically results in roadway damage or collapse. Conventional monitoring techniques, such as extensometers, stress meters, and convergence stations, are only capable to detect the stress or strain data with the shallow layers of surrounding rocks, and they require arduous manual works. Moreover, in the abovementioned monitoring techniques, the monitoring instruments are installed behind the excavation face; therefore, the strain and deformation occurring in front of excavation face cannot be detected. In order to eliminate these shortcomings, an innovative monitoring system for surrounding rock deformation control has been developed base on Brillouin optical time domain reflectometry. Compared with conventional monitoring systems, the proposed system provides a reliable, accurate, and real-time monitoring measure for roadway surrounding rock deformation control over wide extension. The optical fiber sensors are installed in boreholes which are situated ahead of the excavation face; therefore, the sensors can be protected well and the surrounding rock deformation behaviors can be studied. The proposed system has been applied within a TBM-excavated roadway in Zhangji coal mine, China. The surrounding rock deformation behaviors have been detected accurately, and the monitoring results provided essential references for surrounding rock deformation control works.
Rock bolts have been widely applied with roadway excavation in underground coal mines to prevent roadway collapse and improve the stability of roadway surrounding rocks. Overloading and failures of rock bolts could result in accidents or casualties in coal mine roadways. Consequently, monitoring axial forces and work conditions of rock bolts plays an increasingly important role in ensuring safe operations of underground coal mines. Conventional mechanical or electronic rock bolt monitoring systems are typically affected by electromagnetic interference, corrosive groundwater, and dusty circumstance in underground working sites. This work proposed a FBG-based instrumented rock bolt. Quasi-distributed FBG sensors were installed on a slotted rock bolt and encapsulated by epoxy resin that was used to fix FBG sensors on the rock bolt and protect FBG sensors from damage. The FBG sensors were calibrated before the in situ application. Monitoring results indicated that the axial forces of rock bolts installed on the roof of the roadway were higher than that of others, and the maximum axial forces of each rock bolt were typically detected near the middle portion of rock bolts. A real-time and accurate rock bolt monitoring system was established by integrating instrumented rock bolts to the existing monitoring system of the coal mine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.