We present a data-driven method for deformation capture and modeling of general soft objects. We adopt an iterative framework that consists of one component for physics-based deformation tracking and another for spacetime optimization of deformation parameters. Low cost depth sensors are used for the deformation capture, and we do not require any force-displacement measurements, thus making the data capture a cheap and convenient process. We augment a state-of-the-art probabilistic tracking method to robustly handle noise, occlusions, fast movements and large deformations. The spacetime optimization aims to match the simulated trajectories with the tracked ones. The optimized deformation model is then used to boost the accuracy of the tracking results, which can in turn improve the deformation parameter estimation itself in later iterations. Numerical experiments demonstrate that the tracking and parameter optimization components complement each other nicely.
Our spacetime optimization of the deformation model includes not only the material elasticity parameters and dynamic damping coefficients, but also the reference shape which can differ significantly from the static shape for soft objects. The resulting optimization problem is highly nonlinear in high dimensions, and challenging to solve with previous methods. We propose a novel splitting algorithm that alternates between reference shape optimization and deformation parameter estimation, and thus enables tailoring the optimization of each subproblem more efficiently and robustly.
Our system enables realistic motion reconstruction as well as synthesis of virtual soft objects in response to user stimulation. Validation experiments show that our method not only is accurate, but also compares favorably to existing techniques. We also showcase the ability of our system with high quality animations generated from optimized deformation parameters for a variety of soft objects, such as live plants and fabricated models.
In the last decades, due to the development of the parallel programming, the lattice Boltzmann method (LBM) has attracted much attention as a fast alternative approach for solving partial differential equations. In this paper, we first designed an energy functional based on the fuzzy c-means objective function which incorporates the bias field that accounts for the intensity inhomogeneity of the real-world image. Using the gradient descent method, we obtained the corresponding level set equation from which we deduce a fuzzy external force for the LBM solver based on the model by Zhao. The method is fast, robust against noise, independent to the position of the initial contour, effective in the presence of intensity inhomogeneity, highly parallelizable and can detect objects with or without edges. Experiments on medical and real-world images demonstrate the performance of the proposed method in terms of speed and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.