The lower reach of the Yangtze River basin (LYRB) is located at the central region of the mei-yu and baiu front, which represents the subtropical East Asian (EA) summer monsoon. Based on the newly released daily rainfall data, two dominant intraseasonal variation (ISV) modes are identified over the LYRB during boreal summer (May-August), with spectral peaks occurring on day 15 (the biweekly mode) and day 24 (the 21-30-day mode). These two modes have comparable intensities, and together they account for above about 57% of the total intraseasonal variance. Both ISV modes exhibit baroclinic structures over the LYRB at their extreme phases.However, the genesis and evolutions associated with the two modes are different. Considering the genesis of their extreme wet phases over the LYRB, the biweekly mode is initiated by a midlatitude jet stream vorticity anomaly moving southeastward, while the 21-30-day mode is primarily associated with a low-level westward propagation of an anticyclonic anomaly from 1458 to 1208E, which reflects the westward extension of the western North Pacific subtropical high (WNPSH). The development of the biweekly mode at LYRB is enhanced by the northwestward movement of a low-level anticyclonic anomaly from the Philippine Sea to the south of Taiwan, which is a result of the enhancement of the WNPSH resulting from its merger with a transient midlatitude high. In contrast, the development of the 21-30-day mode is enhanced by an upper-level trough anomaly moving from Lake Baikal to far east Russia. These two ISV periodicities are also found to be embedded in their corresponding source regions.The new knowledge on the sources and evolutions of the two major LYRB ISV modes provides empirical predictors for the intraseasonal variation in the subtropical EA summer monsoon.
Polychlorinated dibenzo- p -dioxins (PCDDs), as a class of persistent and highly toxic organic pollutants, have been posing a great threat to human health and the environment. The sensing of these compounds is important but challenging. Here, we report a highly stable zirconium-based metal-organic framework (MOF), Zr 6 O 4 (OH) 8 (HCOO) 2 (CPTTA) 2 (BUT-17) with one-dimensional hexagonal channels and phenyl-rich pore surfaces for the recognition and sensing of two representative PCDDs, 2,3-dichlorodibenzo- p -dioxin (BCDD) and 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD), based on the fluorescence quenching. BUT-17 exhibits high sensing ability with the detection limits as low as 27 and 57 part per billion toward BCDD and TCDD, respectively, and is very selective as well without the interference of similar compounds. The recognition of BUT-17 toward BCDD is demonstrated by single-crystal structure of its guest-loaded phase, in which the fluorescence-quenched complexes form between the adsorbed BCDD molecules and the MOF host through π-π stacking and hydrogen bonding interactions.
ABSTRACT:A concise and objective definition of monsoon rainy season characteristics is proposed for worldwide monsoon regions. The result highlights six major summer monsoon rainy season domains and the mean dates of the local onset, peak and withdrawal phases of the summer monsoon rainy season. The onset phases occur progressively later poleward in the continental domains but primarily eastward in the oceanic monsoon regions. The rainy season retreats equatorward over the continental and oceanic monsoon regions. The length of the rainy season decreases poleward and shorter rainy season can also be found over the outskirts of warm water. Some exceptions exist in terms of the characteristics of rainy season, e.g. the westward advance of rainy season over North Africa and an apparently prolonged rainy season in the Korean peninsula. The results here are basically compatible with those obtained in previous studies on regional monsoons.A definition of the seasonal wind overturning is proposed. Combining rainfall and winds, we stratify the global monsoon into strong and weak categories. The strong monsoons are typically in the regions with both concentration of summer rainfall and annual reversal of low-level winds, while the weak monsoon features only a contrasting wet-dry season. Seemingly, some mid-latitude regions with wind reversals are not monsoonal because of the reversals being opposite to the monsoon overturning and the rainfall patterns being more or less Mediterranean.The comparison between the monsoon domains derived from Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the 40-year European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40), the Japanese 25-year Reanalysis (JRA-25) and National Centers for Environmental Prediction (NCEP) datasets show good capabilities of the reanalyses in demarcation of the major monsoon rainy season domains in the tropics and subtropics. But the reanalyses are less realistic in the mid-latitudes of Eurasia and North America. The result here provides the simple yet objective definitions of monsoon domain, onset, peak and withdrawal which are useful for validation of GCMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.