The dredger construction environment is harsh, and the mud concentration meter can be damaged from time to time. To ensure that the dredger can continue construction operations when the mud concentration meter is damaged, the development of a dredger with advantages of low price and simple operation that can be used in emergency situations is essential. The characteristic spare mud concentration meter is particularly critical. In this study, a data-driven soft sensor method is proposed that can predict the mud concentration in real time and can mitigate current marine mud concentration meter malfunctions, which affects continuous construction. This sensor can also replace the mud concentration meter when the construction is stable, thereby extending its service life. The method is applied to two actual construction cases, and the results show that the stacking generalization (SG) model has a good prediction effect in the two cases, and its goodness of fit R2 values are as high as 0.9774 and 0.9919, indicating that this method can successfully detect the mud concentration.
Dredging is a basic construction for waterway improvement, harbor basin maintenance, land reclamation, environmental protection dredging, and deep-sea mining. The dredging process of cutter suction dredgers is so complex that the operational data show strong characteristics of dynamic, nonlinearity, and time delay, which make it difficult to predict the productivity accurately via basic principles models. In this paper, we propose a novel integrating PCA-LSTM model to improve the productivity prediction of cutter suction dredger. Firstly, multiple variables are reduced in dimension and selected by PCA method based on the working mechanism of cutter suction dredger. Then the productivity is predicted via mud concentration in long short-term memory network with relevant operational time-series data. Finally, the proposed method is successfully applied to an actual case study in China. Also, it performs well in the cross-validation and comparative study for several important characteristics: (i) it involves the operational parameters based on the mechanism analysis; and (ii) it is a deep-learning-based approach that can deal with operation series data with a special memory mechanism. This study provides a heuristic idea for integrating the data-driven method and supervision of human knowledge for application in practical engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.