It is essential to use multi-sensor information fusion techniques for condition monitoring and prediction in large complex systems. A new distributed model fusion method is proposed to predict the remaining useful life for a nonlinear Wiener process in this paper. First, the state–space model of nonlinear Wiener process based on multi-sensor monitoring is established, and the distributed Kalman filtering algorithm is used to filter and fuse the measurement data received from multiple sensors. Next, the parameters and degradation states of the state–space model are estimated and updated online in real time using the expectation maximum and smoothing filter algorithms. Moreover, the distribution of the system RUL is obtained according to the estimated state–space model considering the random failure threshold factor. Finally, numerical experiments are conducted to elucidate the accuracy of the adopted distributed fusion method, and the adaptability and effectiveness of the proposed method are verified using the FD001 data of the C-MPASS dataset as an example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.