The mechanical environment has an important influence on biological behavior of the human musculoskeletal system. Either in vivo or in vitro culture, the growth and development of the musculoskeletal tissue depend on the mechanical environment. Now we propose a new loading device which uses a voice coil motor as driving force to further optimize tissue engineering bioreactor. It can not only provide tissue engineering in vitro culture with different sizes and frequency of loading environments within the physiological range, but also detect the mechanical properties of the culture in building process. This device, which uses the voice coil motor as driving force and closed-loop encoder to control displacement, has the characteristics of low power loss, high acceleration and smooth loading, and can achieve a high-precision loading process with different ranges such as from high-speed to low-speed. The device can facilitate the load research in build process of the engineered musculoskeletal system.
In this article, the equation of the starch and fine hematite particle has been put forward combining with the collision theory. After analyzing the equation and test data, the reaction order of the starch and fen hematite particle can be obtained by integration method and half-life method, which is first degree. It lays the foundation about adsorbed rate equation of the starch and fen hematite particle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.