An estimated 8 million people are infected each year with the pathogen, Mycobacterium tuberculosis, and over 2 million die annually 1 . Yet only about 10% of those infected develop tuberculosis. Genetic variation within host populations is known to play a significant role in humans and animals 2,3 , but the nature of genetic control of host resistance to tuberculosis remains poorly understood. Previously we mapped a new genetic locus on mouse chromosome 1, designated sst1 (for supersusceptibility to tuberculosis1) 4 . Here we demonstrate in sst1 congenic mouse strains that this locus mediates innate immunity, and identify a candidate gene, Intracellular Pathogen Resistance 1 (Ipr1), within the sst1 locus. The Ipr1 gene is upregulated in the sst1 resistant macrophages upon activation and infection, but is not expressed in the sst1 susceptible macrophages. Expression of the Ipr1 transgene in the sst1 susceptible macrophages limits multiplication not only of MTB but also Listeria monocytogenes and switches a cell death pathway of the infected macrophages from necrosis to apoptosis. Our data suggest that the Ipr1 gene product may play a novel role in integrating signals generated by intracellular pathogens with mechanisms controlling innate immunity, cell death and pathogenesis.
Coexistence of pulmonary tuberculosis (TB) and lung cancer in clinic poses significant challenges for the diagnostic and treatment of both diseases. Although association of chronic inflammation and cancer is welldocumented, causal relationship between TB infection and lung cancer are not understood. We present experimental evidence that chronic TB infection induces cell dysplasia and squamous cell carcinoma (SCC) in a lung-specific manner. First, squamous cell aggregates consistently appeared within the lung tissue associated with chronic TB lesions, and in some cases resembled SCCs. A transplantable tumor was established after the transfer of cells isolated from TB lung lesions into syngeneic recipients. Second, the (Mycobacterium tuberculosis) MTB-infected macrophages play a pivotal role in TBinduced carcinogenesis by inducing DNA damage in their vicinity and by the production of a potent epidermal growth factor epiregulin, which may serve as a paracrine survival and growth factor responsible for squamous metaplasia and tumorigenesis. Third, lung carcinogenesis during the course of chronic TB infection was more pronounced in animals with severe lung tissue damage mediated by TB-susceptibility locus sst1. Together, our experimental findings showed a causal link between pulmonary TB and lung tumorigenesis and established a genetic model for further analysis of carcinogenic mechanisms activated by TB infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.