A simple electrochemical method for estimating the antioxidant activity (AA) of flavonoids has been developed. The proposed method is based on a measurement of the half-wave potential (E1/2) of the first oxidation wave of flavonoids by using flow-through column electrolysis. At the same time, the lipid peroxidation (LPO) inhibiting effects of these flavonoids were determined. A quantitative structure-activity relationship was obtained to describe the AA of flavonoids: IC50(µM) = 30.36 + 151.50E1/2 (V) -12.63log P (r = 0.852), where IC50 represents the concentration for 50% inhibition of LPO, and P represents the octanol/water partition coefficient. This method is expected to be useful for the quick screening of flavonoid antioxidants, and evaluating the AA of flavonoid-containing foods and medicinal plants.
Adenosine triphosphate (ATP) is mainly produced in the mitochondrion and used as a universal energy source for various cellular events. Various fluorescent probes for ATP have been established successfully, but most of them are not appropriate for monitoring the fluctuation of the mitochondrial ATP level. Herein, a fluorescent probe named Mito-Rh is first synthesized and used to recognize ATP in mitochondrion. In the probe, rhodamine, diethylenetriamine, and triphenylphosphonium are selected as fluorophore, reaction site, and mitochondrion-targeting group, respectively. Probe Mito-Rh shows high sensitivity to ATP with 81-fold fluorescence enhancement, and the detection range (0.1-10 mM) can match the concentration level of ATP in the mitochondrion. Moreover, Mito-Rh provides excellent selectivity toward ATP over other biological anions (ADP, AMP, GTP, CTP, UTP) owing to a concurrent effect of dual recognition sites (hydrogen bond and π-π stacking). In particular, the probe can localize in mitochondrion specifically and demonstrates utility in the real-time detection of mitochondrial ATP concentration changes.
Alkaline phosphatase (ALP) is an essential enzyme and widely distributes in a variety of tissues. To date, various nanomaterial and small-molecule fluorescent probes for ALP have been constructed successfully, but the emission wavelengths of these probes are in the ultraviolet or visible range, which is not beneficial for bioimaging. Herein, a hemicyanine-based near-infrared (NIR) fluorescent probe named CyP is first synthesized and used to detect ALP activity. The characteristics of probe CyP are as follows: (1) The probe possesses a facile structure, which can be obtained by easy synthetic steps. (2) The fluorescence emission of the sensing system is at 738 nm belonging to NIR region, which is suitable for bioimaging in vivo. (3) The probe exhibits high sensitivity to ALP with 10-fold fluorescence enhancement and low detection limit (0.003 U/mL) can match the level of ALP in vivo. (4) The fluorescent change of the probe is attributed to the fact that ALP-catalyzed cleavage of the phosphate group in CyP induces the transformation of CyP (fluorescence off) into CyOH (fluorescence on), which is proved by HPLC, P NMR, MS, and DFT calculation. (5) The NIR fluorescent probe is applied for the detection of endogenous ALP activity in various biological samples such as cell, tissue, and living animal with satisfactory results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.