Abstract:The rapid printing of 3D parts with desired electrical properties enables numerous applications. Fused deposition modeling (FDM) using conductive thermoplastic composites has been a valuable approach for such fabrication. The parts produced by FDM possess various controllable structural features, but the effects of the structural features on the electrical properties remain to be determined. This study investigated the effects of these features on the electrical resistivity and resistivity anisotropy of 3D-printed ABS/CB composites. The effects of the process parameters of FDM, including the layer thickness, raster width, and air gap, on the resistivity in both the vertical and horizontal directions for cubic samples were studied because the internal structure of the printed parts depended on those process parameters. The resistivities of printed parts in different parameter combinations were measured by an impedance analyzer and finite element models were created to investigate the relationship between the resistivity and the internal structure. The results indicated that the parameters remarkably affected the resistivity due to the influence of voids and the bonding condition between adjacent fibers. The resistivity in the vertical direction ranged from 70.40 ± 2.88 Ω·m to 180.33 ± 8.21 Ω·m, and the resistivity in the horizontal direction ranged from 41.91 ± 2.29 Ω·m to 58.35 ± 0.61 Ω·m at the frequency of 1 kHz. Moreover, by adjusting the resistivities in different directions, the resistivity anisotropy of the printed parts can be manipulated from 1.01 to 3.59. This research may serve as a reference to fabricate parts with sophisticated geometry with desired electrical resistivity and resistivity anisotropy.
CD147, a member of the immunoglobulin superfamily (IgSF), plays fundamental roles in intercellular interactions in numerous pathological and physiological processes. Importantly, our previous studies have demonstrated that HAb18G/CD147 is a novel hepatocellular carcinoma (HCC)-associated antigen, and HAb18G/CD147 stimulates adjacent fibroblasts and HCC cells to produce elevated levels of several matrix metalloproteinases, facilitating invasion and metastasis of HCC cells. In addition, HAb18G/CD147 has also been shown to be a novel universal cancer biomarker for diagnosis and prognostic assessment of a wide range of cancers. However, the structural basis underlying the multifunctional character of CD147 remains unresolved. We report here the crystal structure of the extracellular portion of HAb18G/CD147 at 2.8 Å resolution. The structure comprises an N-terminal IgC2 domain and a C-terminal IgI domain, which are connected by a 5-residue flexible linker. This unique C2-I domain organization is distinct from those of other IgSF members. Four homophilic dimers exist in the crystal and adopt C2-C2 and C2-I dimerization rather than V-V dimerization commonly found in other IgSF members. This type of homophilic association thus presents a novel model for homophilic interaction between C2 domains of IgSF members. Moreover, the crystal structure of HAb18G/CD147 provides a good structural explanation for the established multifunction of CD147 mediated by homo/heterooligomerizations and should represent a general architecture of other CD147 family members.
ObjectiveVariations of conductive fluid content in brain tissue (e.g. cerebral edema) change tissue impedance and can potentially be measured by Electrical Impedance Tomography (EIT), an emerging medical imaging technique. The objective of this work is to establish the feasibility of using EIT as an imaging tool for monitoring brain fluid content.Designa prospective study.SettingIn this study EIT was used, for the first time, to monitor variations in cerebral fluid content in a clinical model with patients undergoing clinical dehydration treatment. The EIT system was developed in house and its imaging sensitivity and spatial resolution were evaluated on a saline-filled tank.Patients23 patients with brain edema.InterventionsThe patients were continuously imaged by EIT for two hours after initiation of dehydration treatment using 0.5 g/kg intravenous infusion of mannitol for 20 minutes.Measurement and Main ResultsOverall impedance across the brain increased significantly before and after mannitol dehydration treatment (p = 0.0027). Of the all 23 patients, 14 showed high-level impedance increase and maintained this around 4 hours after the dehydration treatment whereas the other 9 also showed great impedance gain during the treatment but it gradually decreased after the treatment. Further analysis of the regions of interest in the EIT images revealed that diseased regions, identified on corresponding CT images, showed significantly less impedance changes than normal regions during the monitoring period, indicating variations in different patients' responses to such treatment.ConclusionsEIT shows potential promise as an imaging tool for real-time and non-invasive monitoring of brain edema patients.
The cDNA from Nicotiana tabacum encoding Putrescine N-methyltransferase (PMT), which catalyzes the first committed step in the biosynthesis of tropane alkaloids, has been introduced into the genome of a scopolamine-producing Hyoscyamus niger mediated by the disarmed Agrobacterium tumefaciens strain C58C1, which also carries Agrobacterium rhizogenes Ri plasmid pRiA4, and expressed under the control of the CaMV 35S promoter. Hairy root lines transformed with pmt presented fivefold higher PMT activity than the control, and the methylputrescine (MPUT) levels of the resulting engineered hairy roots increased four to fivefold compared to the control and wild-type roots, but there was no significant increase in tropane alkaloids. However, after methyl jasmonate (MeJA) treatment, a considerable increase of PMTase and endogenous H6Hase as well as an increase in scopolamine content was found either in the transgenic hairy roots or the control. The results indicate that hairy root lines over-expressing pmt have a high capacity to synthesize MPUT, whereas their ability to convert hyoscyamine into scopolamine is very limited. Exposure to MeJA strongly stimulated both polyamine and tropane biosynthesis pathways and elicitation led to more or less enhanced production simultaneously.
Intracranial bleeding is one of the most severe medical emergencies in neurosurgery. Early detection or diagnosis would largely reduce the rate of disability and mortality, and improve the prognosis of the patients. Electrical Impedance Tomography (EIT) can non-invasively image the internal resistivity distribution within a human body using a ring of external electrodes, and is thus a promising technique to promptly detect the occurrence of intracranial bleedings because blood differs from other brain tissues in resistivity. However, so far there is no experimental study that has determined whether the intracranial resistivity changes in humans could be repeatedly detected and imaged by EIT. Hence, we for the first time attempt to clinically validate this by in vivo imaging the influx and efflux of irrigating fluid (5% dextrose in water, D5W) during the twist-drill drainage operation for the patients with subdural hematoma (SDH). In this study, six patients (four male, two female) with subacute or chronic SDH received the surgical operation in order to evacuate the hematoma around subdural region, and EIT measurements were performed simultaneously on each patient’s head. The results showed that the resistivity significantly increased on the corresponding position of EIT images during the influx of D5W and gradually decreased back to baseline during the efflux. In the quantitative analysis, the average resistivity values demonstrated the similar results and had highly linear correlation (R2 = 0.93±0.06) with the injected D5W volumes, as well as the area of the resistivity gain(R2 = 0.94±0.05). In conclusion, it was clinically validated that intracranial resistivity changes in humans were detectable and quantifiable by the EIT method. After further technical improvements, EIT has the great potential of being a routine neuroimaging tool for early detection of intracranial bleedings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.