We demonstrate the new features of a polyurethane shape memory polymer: water-driven actuation and recovery in sequence (i.e., programmable). Hydrogen bonding is identified as the reason behind these features. In addition, the absorbed water is quantitatively separated into two parts, namely, the free water and bound water. Their individual contribution on the glass transition temperature is identified.
It was observed that the polyurethane shape memory polymer (SMP) loses its shape fixing capability after being exposed in the air at room temperature for several days. A significant indication for this change is the continuous decrease of the glass transition temperature (T g ) of polyurethane. Accompanying the decrease of T g , the uniaxial tensile behaviour also changes. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) tests were carried out to find the cause behind this phenomenon. Moisture was concluded as the main reason. A mathematical expression was obtained for the relationship between T g and the moisture. Moreover, the polyurethane shape memory polymer can fully regain its original properties after being heated at temperatures above 180 • C, which is the melting temperature of this SMP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.