A worldwide outbreak of severe acute respiratory syndrome (SARS) had been reported. Over 8439 SARS cases and 812 SARS-related deaths were reported to the World Health Organization from 32 countries around the world up to 5 July 2003. The mechanism of transmission of SARS-CoV has been limited only to close contacts with patients. Attention was focused on possible transmission by the sewage system because laboratory studies showed that patients excreted coronavirus RNA in their stools in Amoy Gardens in Hong Kong. To explore whether the stool of SARS patients or the sewage containing the stool of patients would transmit SARS-CoV or not, we used a style of electropositive filter media particle to concentrate the SARS-CoV from the sewage of two hospitals receiving SARS patients in Beijing, as well as cell culture, semi-nested RT-PCR and sequencing of genes to detect and identify the viruses from sewage. There was no live SARS-CoV detected in the sewage in these assays. The nucleic acid of SARS-CoV was found in the sewage before disinfection from both hospitals by PCR. After disinfection, SARS-CoV RNA could be detected from some samples from the 309th Hospital of the Chinese People's Liberation Army, but not from Xiao Tang Shan Hospital after disinfection. In this study, we found that the virus can survive for 14 days in sewage at 4 degrees C, 2 days at 20 degrees C, and its RNA can be detected for 8 days though the virus had been inactivated. In conclusion, this study demonstrates that the RNA of SARS-CoV could be detected from the concentrates of sewage of both hospitals receiving SARS patients before disinfection and occasionally after disinfection though there was no live SARS-CoV; thus much attention should be paid to the treatment of stools of patients and the sewage of hospitals receiving SARS patients.
The transmission of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is associated with close contact to SARS patients and droplet secretions of those patients. The finding of positive RT-PCR results from stools of SARS patients suggests that stools of SARS patients or sewage containing stools of patients could transmit SARS-CoV. We used a novel style of electropositive filter media particle to concentrate the SARS-CoV from the sewage of two hospitals receiving SARS patients in Beijing. We also used cell culture, RT-PCR and gene sequencing to detect and identify the viruses from sewage. No infectious SARS-CoV contamination was found in any of the samples collected, but the nucleic acid of SARS-CoV could be detected in the sewage from the two hospitals before disinfection. While the RNA was only detected in three samples from the 309th Hospital, the others were negative after disinfection. These findings provide strong evidence that SARS-CoV can be excreted through the stool/urine of patients into sewage system, thus making the sewage system a possible route of transmission.
Background: Coronavirus disease 2019 (COVID-19) is a novel infectious viral disease, which lacks well-established diagnostic laboratory parameters that could be used to evaluate disease severity, thromboembolism or cardiovascular events and to predict clinical prognosis. Coagulation cascade and platelet functions have not been well studied in the COVID-19 patients. Methods: A total of 178 patients enrolled in Wuhan Huoshenshan Hospital were included for the study. Blood platelets and coagulation functions were analyzed in COVID-19 patients with non-severe and severe subgroups. Other biochemical laboratory parameters were also analyzed. Results: Forty-nine (27.5%) out of 178 patients were diagnosed with severe disease in this study, and 129 patients with non-severe disease. Severe disease group had significant lower platelet count 186.00 (103.50-249.00) ×10 9 /L than 251.00 (202.00-317.00) ×10 9 /L of non-severe group, p = 0.000. Severe group also had significantly abnormal coagulation parameters than non-severe group: prothrombin time (PT) 14.55 (13.40-16.53) s vs. 12.70 (12.15-13.59) s, p = 0.000; international normalized ratio (INR) 1.21 (1.13-1.36) vs. 1.06 (1.01-1.13), p = 0.000; thrombin time (TT) 16.35 (15.69-17.47) s vs. 15.68 (14.79-16.69) s, p = 0.011; D-Dimer 1.05 (0.68-5.90) mg/L vs. 0.42 (0.28-0.79) mg/L, p = 0.000; While the liver function parameter alanine aminotransferase (ALT) and aspartate aminotransferase (AST) didn't show significance between two groups, ALT 30.80 (19.00-58.30) IU/L vs. 28.80 (15.75-50.15) IU/L, p = 0.487; AST 27.80 (19.30-40.55) IU/L vs. 22.6 (16.7-32.03) IU/L, p = 0.102. Disseminated intravascular coagulation (DIC) rate was 6.1% in severe group while 0% in non-severe group. Survival rate of severe disease group was worse than non-severe group, 85.7% vs. 100%, p = 0.000. Thrombocytopenia correlated with coagulation function, DIC rate and survival. Six out of 7 death case had thrombocytopenia during hospitalization, and platelet count decreased subsequently until death.
Background/Aims: MicroRNAs (miRNAs) play critical roles during carcinogenesis and cancer progression. Down-regulation of miR-204 has been frequently observed in various cancers. In this study, we investigated the roles and mechanisms of miR-204 in human intrahepatic cholangiocarcinoma (ICC). Methods: The relative expression of miR-204 in ICC tissues and cell lines was monitored by qRT-PCR. Effects of miR-204 were studied in human ICC cell lines HuH28 and HuCCT1, and cells were analyzed for proliferation, migration and invasion. Expression levels of miR-204 target gene Slug and EMT markers (E-cadherin and vimentin) in ICC cell lines and tissues were measured by qRT-PCR, western blotting and immunofluorescence. Results: miR-204 was frequently downregulated in human ICC, and the low-level expression of miR-204 was significantly associated with lymph node metastasis. Overexpression of miR-204 dramatically suppressed ICC cell migration and invasion, as well as the epithelial-mesenchymal transition process (EMT). Slug was identified as a direct target of miR-204, and its downregulation by miR-204 in HuH28 cells reversed EMT, as shown by the increased expression of the epithelial marker E-cadherin and decreased expression of the mesenchymal marker vimentin. Conclusion: These findings suggest that miR-204 plays negative roles in the invasive and/or metastatic potential of ICC, and that its suppressive effects are mediated by repressing Slug expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.