To characterise the distribution, classification, and quantity of foamy macrophages (FMs) in tuberculous wound tissue and the relationship between FM and delayed healing of tuberculous wounds. Morphological studies were performed to explore the distribution of FM and Mycobacterium tuberculosis (Mtb) in tuberculous wounds, with acute and chronic wounds included for comparison. Phorbol-12-myristate-13-acetate stimulation-differentiated THP-1 cells were treated with Mtb to induce their differentiation into FM with oxidised low-density lipoprotein treatment serving as a control. Relative cytokine levels were determined by quantitative PCR and Western blotting. Varied co-culture combinations of Mtb, THP-1, FM, and fibroblasts were performed, and proliferation, migration, ability to contract collagen gel, and protein levels of the chemokines in the supernatants of the fibroblasts were assessed. The differentially expressed genes in human skin fibroblasts (HSFs) after co-culture with or without FM were identified using microarray. Many FM were found in the tissues of tuberculous wounds. The FM that did not engulf Mtb (NM-FM) were mainly distributed in tissues surrounding tuberculous wounds, whereas the FM that engulfed Mtb (M-FM) were dominantly located within granulomatous tissues. Co-culture experiments showed that, with the Mtb co-culture, the portions of NM-FM in the total FM grew over time. The migration, proliferation, chemokine secretion, and the ability of fibroblasts to contract collagen gel were inhibited when co-cultured with Mtb, FM, or a combination of the two. Further investigation showed that the TLRs/ NF-κB signalling pathway is involved in fibroblast function under the stimulation of FM. TLRs and NF-κB agonists could reverse the phenotypic changes in HSFs after co-culture with FM. The tuberculous wound microenvironment composed of Mtb and FM may affect wound healing by inhibiting the functions of fibroblasts. FM potentially inhibit fibroblasts' function by inhibiting the TLRs/NF-κB signalling pathway in tuberculous wounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.