Thousands of acridines with therapeutic and biological activities or with photochemical properties have been developed. In addition, to modify the position and the nature of the substituent on the acridine core, more attention may be paid to the development of azaacridine or other heteroatom-substituted acridine derivatives and their synthesis methods to broaden the application of acridine derivatives. In cancer chemotherapy, the mode of action of acridine derivatives needs to be further studied. Efficient methods for identification and optimization of acridine derivatives to localize at the sites of disease need to be further developed. Moreover, acridine drugs may be combined with such bioactive agents as DNA repair proteins inhibitors to overcome tumor resistance and improve outcomes.
Humans have been suffered from viral infections over the centuries, such as influenza, HSV, and HIV, which have killed millions of people worldwide. However, the availability of effective treatments for infectious diseases remains limited until now, as most of the viral pathogens resisted to many medical treatments. Marine microbes are currently one of the most copious sources of pharmacologically active natural products, which have constantly provided promising antivirus agents. To date, a large number of marine microbial secondary metabolites with antiviral activities have been widely reported. In this review, we have summarized the potential antivirus compounds from marine microorganisms over the last decade. In addition, the structures, bioactivities, and origins of these compounds were discussed as well.
:
Since the last century, when scientists proposed the lock-and-key model, the discovery of
drugs has focused on the development of drugs acting on single target. However, single-target drug
therapies are not effective to complex diseases with multi-factorial pathogenesis. Moreover, the
combination of single-target drugs readily causes drug resistance and side effects. In recent years,
multi-target drugs have increasingly been represented among FDA-approved drugs. Alzheimer’s
Disease (AD) is a complex and multi-factorial disease for which the precise molecular mechanisms
are still not fully understood. In recent years, rational multi-target drug design methods, which combine
the pharmacophores of multiple drugs, have been increasingly applied in the development of
anti-AD drugs. In this review, we give a brief description of the pathogenesis of AD and provide
detailed discussions about the recent development of chemical structures of anti-AD agents (2013 up
to present) that have multiple targets, such as amyloid-β peptide, Tau protein, cholinesterases,
monoamine oxidase, β-site amyloid-precursor protein-cleaving enzyme 1, free radicals, metal ions
(Fe2+, Cu2+, Zn2+) and so on. In this paper, we also added some novel targets or possible pathogenesis
which have been reported in recent years for AD therapy. We hope that these findings may provide
new perspectives for the pharmacological treatment of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.