Molecular approaches to understanding the functional circuitry of the nervous system promise new insights into the relationship between genes, brain and behaviour. The cellular diversity of the brain necessitates a cellular resolution approach towards understanding the functional genomics of the nervous system. We describe here an anatomically comprehensive digital atlas containing the expression patterns of approximately 20,000 genes in the adult mouse brain. Data were generated using automated high-throughput procedures for in situ hybridization and data acquisition, and are publicly accessible online. Newly developed image-based informatics tools allow global genome-scale structural analysis and cross-correlation, as well as identification of regionally enriched genes. Unbiased fine-resolution analysis has identified highly specific cellular markers as well as extensive evidence of cellular heterogeneity not evident in classical neuroanatomical atlases. This highly standardized atlas provides an open, primary data resource for a wide variety of further studies concerning brain organization and function.
Gene co-expression networks are increasingly used to explore the system-level functionality of genes. The network construction is conceptually straightforward: nodes represent genes and nodes are connected if the corresponding genes are significantly co-expressed across appropriately chosen tissue samples. In reality, it is tricky to define the connections between the nodes in such networks. An important question is whether it is biologically meaningful to encode gene co-expression using binary information (connected=1, unconnected=0). We describe a general framework for 'soft' thresholding that assigns a connection weight to each gene pair. This leads us to define the notion of a weighted gene co-expression network. For soft thresholding we propose several adjacency functions that convert the co-expression measure to a connection weight. For determining the parameters of the adjacency function, we propose a biologically motivated criterion (referred to as the scale-free topology criterion).We generalize the following important network concepts to the case of weighted networks. First, we introduce several node connectivity measures and provide empirical evidence that they can be important for predicting the biological significance of a gene. Second, we provide theoretical and empirical evidence that the 'weighted' topological overlap measure (used to define gene modules) leads to more cohesive modules than its 'unweighted' counterpart. Third, we generalize the clustering coefficient to weighted networks. Unlike the unweighted clustering coefficient, the weighted clustering coefficient is not inversely related to the connectivity. We provide a model that shows how an inverse relationship between clustering coefficient and connectivity arises from hard thresholding.We apply our methods to simulated data, a cancer microarray data set, and a yeast microarray data set.
Crohn’s disease (CD) and ulcerative colitis (UC), the two common forms of inflammatory bowel disease (IBD), affect over 2.5 million people of European ancestry with rising prevalence in other populations1. Genome-wide association studies (GWAS) and subsequent meta-analyses of CD and UC2,3 as separate phenotypes implicated previously unsuspected mechanisms, such as autophagy4, in pathogenesis and showed that some IBD loci are shared with other inflammatory diseases5. Here we expand knowledge of relevant pathways by undertaking a meta-analysis of CD and UC genome-wide association scans, with validation of significant findings in more than 75,000 cases and controls. We identify 71 new associations, for a total of 163 IBD loci that meet genome-wide significance thresholds. Most loci contribute to both phenotypes, and both directional and balancing selection effects are evident. Many IBD loci are also implicated in other immune-mediated disorders, most notably with ankylosing spondylitis and psoriasis. We also observe striking overlap between susceptibility loci for IBD and mycobacterial infection. Gene co-expression network analysis emphasizes this relationship, with pathways shared between host responses to mycobacteria and those predisposing to IBD.
Understanding the functional consequences of genetic variation, and how it affects complex human disease and quantitative traits, remains a critical challenge for biomedicine. We present an analysis of RNA sequencing data from 1641 samples across 43 tissues from 175 individuals, generated as part of the pilot phase of the Genotype-Tissue Expression (GTEx) project. We describe the landscape of gene expression across tissues, catalog thousands of tissue-specific and shared regulatory expression quantitative trait loci (eQTL) variants, describe complex network relationships, and identify signals from genome-wide association studies explained by eQTLs. These findings provide a systematic understanding of the cellular and biological consequences of human genetic variation and of the heterogeneity of such effects among a diverse set of human tissues.
PhosphoSitePlus® (PSP, http://www.phosphosite.org/), a knowledgebase dedicated to mammalian post-translational modifications (PTMs), contains over 330 000 non-redundant PTMs, including phospho, acetyl, ubiquityl and methyl groups. Over 95% of the sites are from mass spectrometry (MS) experiments. In order to improve data reliability, early MS data have been reanalyzed, applying a common standard of analysis across over 1 000 000 spectra. Site assignments with P > 0.05 were filtered out. Two new downloads are available from PSP. The ‘Regulatory sites’ dataset includes curated information about modification sites that regulate downstream cellular processes, molecular functions and protein-protein interactions. The ‘PTMVar’ dataset, an intersect of missense mutations and PTMs from PSP, identifies over 25 000 PTMVars (PTMs Impacted by Variants) that can rewire signaling pathways. The PTMVar data include missense mutations from UniPROTKB, TCGA and other sources that cause over 2000 diseases or syndromes (MIM) and polymorphisms, or are associated with hundreds of cancers. PTMVars include 18 548 phosphorlyation sites, 3412 ubiquitylation sites, 2316 acetylation sites, 685 methylation sites and 245 succinylation sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.