SignificanceMeltwater runoff is an important hydrological process operating on the Greenland ice sheet surface that is rarely studied directly. By combining satellite and drone remote sensing with continuous field measurements of discharge in a large supraglacial river, we obtained 72 h of runoff observations suitable for comparison with climate model predictions. The field observations quantify how a large, fluvial supraglacial catchment attenuates the magnitude and timing of runoff delivered to its terminal moulin and hence the bed. The data are used to calibrate classical fluvial hydrology equations to improve meltwater runoff models and to demonstrate that broad-scale surface water drainage patterns that form on the ice surface powerfully alter the timing, magnitude, and locations of meltwater penetrating into the ice sheet.
This paper describes the access to, and the content, characteristics, and potential applications of the tropical cyclone (TC) database that is maintained and actively developed by the China Meteorological Administration, with the aim of facilitating its use in scientific research and operational services. This database records data relating to all TCs that have passed through the western North Pacific (WNP) and South China Sea (SCS) since 1949. TC data collection has expanded over recent decades via continuous TC monitoring using remote sensing and specialized field detection techniques, allowing collation of a multi-source TC database for the WNP and SCS that covers a long period, with wide coverage and many observational elements. This database now comprises a wide variety of information related to TCs, such as historical or real-time locations (i.e., best track and landfall), intensity, dynamic and thermal structures, wind strengths, precipitation amounts, and frequency. This database will support ongoing research into the processes and patterns associated with TC climatic activity and TC forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.