BackgroundBrain derived neurotrophic factor (BDNF) is one of the most important regulatory proteins in the pathophysiology of major depressive disorder (MDD). Increasing numbers of studies have reported the relationship between serum/plasma BDNF and antidepressants (ADs). However, the potential effects of several classes of antidepressants on BDNF concentrations are not well known. Hence, our meta-analyses aims to review the effects of differential antidepressant drugs on peripheral BDNF levels in MDD and make some recommendations for future research.MethodsElectronic databases including PubMed, EMBASE, the Cochrane Library, Web of Science, and PsycINFO were searched from 1980 to June 2016. The change in BDNF levels were compared between baseline and post-antidepressants treatment by use of the standardized mean difference (SMD) with 95% confidence intervals (CIs). All statistical tests were two-sided.ResultsWe identified 20 eligible trials of antidepressants treatments for BDNF in MDD. The overall effect size for all drug classes showed that BDNF levels were elevated following a course of antidepressants use. For between-study heterogeneity by stratification analyses, we detect that length of treatment and blood samples are significant effect modifiers for BDNF levels during antidepressants treatment. While both SSRIs and SNRIs could increase the BDNF levels after a period of antidepressant medication treatment, sertraline was superior to other three drugs (venlafaxine, paroxetine or escitalopram) in the early increase of BDNF concentrations with SMD 0.53(95% CI = 0.13–0.93; P = 0.009).ConclusionsThere is some evidence that treatment of antidepressants appears to be effective in the increase of peripheral BDNF levels. More robust evidence indicates that different types of antidepressants appear to induce differential effects on the BDNF levels. Since sertraline makes a particular effect on BDNF concentration within a short amount of time, there is potential value in exploring its relationship with BDNF and its pharmacological mechanism concerning peripheral blood BDNF. Further confirmatory trials are required for both observations.
Aberrant activity of polycomb repressive complex 2 (PRC2) is involved in a wide range of human cancer progression. The WD40 repeat-containing protein EED is a core component of PRC2 and enhances PRC2 activity through interaction with H3K27me3. In this study, we report the discovery of a class of pyrimidone compounds, represented by BR-001, as potent allosteric inhibitors of PRC2. X-ray co-crystallography showed that BR-001 directly binds EED in the H3K27me3-binding pocket. BR-001 displayed antitumor potency in vitro and in vivo. In Karpas422 and Pfeiffer xenograft mouse models, twice daily oral dosing with BR-001 resulted in robust antitumor activity. BR-001 was also efficacious in syngeneic CT26 colon tumor-bearing mice; oral dosing of 30 mg/kg of BR-001 led to 59.3% tumor growth suppression and increased frequency of effector CD8 þ T-cell infiltrates in tumors. Pharmacodynamic analysis revealed that CXCL10 was highly upregulated, suggesting that CXCL10 triggers the trafficking of CD8 þ T cells toward tumor sites. Our results demonstrate for the first time that inhibition of EED modulates the tumor immune microenvironment to induce regression of colon tumors and therefore has the potential to be used in combination with immune-oncology therapy.Significance: BR-001, a potent inhibitor of the EED subunit of the PRC2 complex, suppresses tumor progression by modulating the tumor microenvironment. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis):
Lung cancer is the leading cause of cancer-associated mortality worldwide. Elucidation of the pathogenesis and biology of lung cancer is critical for the design of an effective treatment for patients. Non-small cell lung cancer (NSCLC) accounts for 80–85% of lung cancer cases. The abnormal expression of Notch signaling pathway members is a relatively frequent event in NSCLC. The Notch signaling pathway serves important roles in cell fate determination, proliferation, differentiation and apoptosis. Increasing evidence supports the association of Notch signaling dysregulation with various types of malignant tumor, including NSCLC. Several studies have demonstrated that members of the Notch signaling pathway may be potential biomarkers for predicting the progression and prognosis of patients with NSCLC. Furthermore, Notch signaling serves critical roles in the tumorigenesis and treatment resistance of NSCLC cells by promoting the proliferation or inhibiting the apoptosis of NSCLC cells. The present review provides a detailed summary of the roles of Notch signaling in NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.