Pretreatment is the key step to overcome the recalcitrance of lignocellulosic biomass making sugars available for subsequent enzymatic hydrolysis and microbial fermentation. During the process of pretreatment and enzymatic hydrolysis as well as fermentation, various toxic compounds may be generated with strong inhibition on cell growth and the metabolic capacity of fermenting strains. Zymomonas mobilis is a natural ethanologenic bacterium with many desirable industrial characteristics, but it can also be severely affected by lignocellulosic hydrolysate inhibitors. In this review, analytical methods to identify and quantify potential inhibitory compounds generated during lignocellulose pretreatment and enzymatic hydrolysis were discussed. The effect of hydrolysate inhibitors on Z. mobilis was also summarized as well as corresponding approaches especially the high-throughput ones for the evaluation. Then the strategies to enhance inhibitor tolerance of Z. mobilis were presented, which include both forward and reverse genetics approaches such as classical and novel mutagenesis approaches, adaptive laboratory evolution, as well as genetic and metabolic engineering. Moreover, this review provided perspectives and guidelines for future developments of robust strains for efficient bioethanol or biochemical production from lignocellulosic materials.
Background: Efficient and convenient genome-editing toolkits can expedite genomic research and strain improvement for desirable phenotypes. Zymomonas mobilis is a highly efficient ethanol-producing bacterium with a small genome size and desirable industrial characteristics, which makes it a promising chassis for biorefinery and synthetic biology studies. While classical techniques for genetic manipulation are available for Z. mobilis, efficient genetic engineering toolkits enabling rapidly systematic and high-throughput genome editing in Z. mobilis are still lacking. Results: Using Cas12a (Cpf1) from Francisella novicida, a recombinant strain with inducible cas12a expression for genome editing was constructed in Z. mobilis ZM4, which can be used to mediate RNA-guided DNA cleavage at targeted genomic loci. gRNAs were then designed targeting the replicons of native plasmids of ZM4 with about 100% curing efficiency for three native plasmids. In addition, CRISPR-Cas12a recombineering was used to promote gene deletion and insertion in one step efficiently and precisely with efficiency up to 90%. Combined with single-stranded DNA (ssDNA), CRISPR-Cas12a system was also applied to introduce minor nucleotide modification precisely into the genome with high fidelity. Furthermore, the CRISPR-Cas12a system was employed to introduce a heterologous lactate dehydrogenase into Z. mobilis with a recombinant lactate-producing strain constructed. Conclusions: This study applied CRISPR-Cas12a in Z. mobilis and established a genome editing tool for efficient and convenient genome engineering in Z. mobilis including plasmid curing, gene deletion and insertion, as well as nucleotide substitution, which can also be employed for metabolic engineering to help divert the carbon flux from ethanol production to other products such as lactate demonstrated in this work. The CRISPR-Cas12a system established in this study thus provides a versatile and powerful genome-editing tool in Z. mobilis for functional genomic research, strain improvement, as well as synthetic microbial chassis development for economic biochemical production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.