Optical microfiber taper has unique propagation properties, which provides versatile waveguide structure to design the tunable photonic devices. In this paper, the S-tapered microfiber is fabricated by using simple fusion spicing. The spectral characteristics of microfiber taper integrated with ferrofluid under different magnetic-field intensities have been theoretically analyzed and experimentally demonstrated. The spectrum are both found to become highly magnetic-field-dependent. The results indicate the transmission and wavelength of the dips are adjustable by changing magnetic field intensity. The response of this device to the magnetic field intensity exhibits a Langvin function. Moreover, there is a linear relationship between the transmission loss and magnetic field intensity for a magnetic field intensity range of 25 to 200Oe, and the sensitivities as high as 0.13056dB/Oe and 0.056nm/Oe have been achieved, respectively. This suggests a potential application of this device as a tunable all-in-fiber photonic device, such as magneto-optic modulator, filter, and sensing element.
A compact magnetic field sensor has been proposed based on multimode interference effects. It consists of typical multimode interferometer (MMI) immersed into the magnetic fluid (MF) which is formed by a section of square no-core fiber (NCF) spliced between two single-mode fibers. The transmission spectral characteristics of this MMI have been analyzed, and the spectral magnetic response of the proposed sensor has been investigated by immersing the NCF into the MF environment. The transmission response of the interference maxima exhibits a sensitivity of −0.01939 dB/Oe in the relatively linear range. Due to its low cost and compactness, this sensor would find potential applications in the measurement of magnetic field.
An all-fiber twist sensor based on multimode interferometer (MMI) has been proposed and fabricated by splicing both ends of a section of square no-core fiber (NCF) with a single mode fiber. We have investigated the transmission spectral characteristics of the square fiber under different applied twisting angles. Within a torsion angle range of -360°~360°, the wavelength and transmission sensitivities are 1.28615 nm/(rad × m(-1)) and 0.11863%/ (rad × m(-1)), respectively. Moreover due to the trivial thermal expansion coefficient of pure silica fiber, the proposed twist sensor has a low temperature sensitivity, which is desirable to solve the temperature cross sensitivity.
A highly sensitive optical fiber twist sensor has been proposed by employing a Sagnac interferometer based on polarization-maintaining elliptical core fibers (PM-ECFs). The twist effects have been theoretically analyzed and experimentally demonstrated. Based on the photoelastic effect, the resonance wavelength linearly shifts with the increment of twist and the wavelength shift is also dependent on the torsion direction. The maximum torsion sensitivities reach 18.60nm/(rad/m) for clockwise (CW) torsion direction and 15.83nm/(rad/m) for anticlockwise (ACW) torsion direction, respectively. To eliminate the temperature cross-sensitivity effect, a sensor matrix for simultaneous measurement of twist and temperature has also been obtained. Moreover, theoretical and experimental investigations indicate that by optimizing the refractive index difference between the core and cladding, core ellipticity and cladding diameter, the twist sensitivity could be further improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.