Background
Owing to metabolic disequilibrium and immune suppression, intracerebral hemorrhage (ICH) patients are prone to infections; according to a recent global analysis of stroke cases, approximately 10 million new-onset ICH patients had experienced concurrent infection. However, the intrinsic mechanisms underlying the effects of infection related peripheral inflammation after ICH remain unclear.
Methods
Lipopolysaccharide (LPS) was intraperitoneally injected into ICH model mice to induce peripheral inflammation. Neurobehavioral deficits, blood‒brain barrier (BBB) disruption, and the expression of CCR5, JAK2, STAT3, and MMP9 were evaluated after treatment with recombinant CCL5 (rCCL5) (a CCR5 ligand), maraviroc (MVC) (an FDA-approved selective CCR5 antagonist), or JAK2 CRISPR plasmids.
Results
Our study revealed that severe peripheral inflammation increased CCL5/CCR5 axis activation in multiple inflammatory cell types, including microglia, astrocytes, and monocytes, and aggravated BBB disruption and neurobehavioral dysfunction after ICH, possibly in part through the JAK2/STAT3 signaling pathway.
Conclusions
CCR5 might be a potential target for the clinical treatment of infection-induced exacerbation of BBB disruption following ICH.
Sepsis susceptibility is significantly increased in patients with intracerebral hemorrhage (ICH), owing to immunosuppression and intestinal microbiota dysbiosis. To date, ICH with sepsis occurrence is still difficult for clinicians to deal with, and the mortality, as well as long-term cognitive disability, is still increasing. Actually, intracerebral hemorrhage and sepsis are mutually exacerbated via similar pathophysiological mechanisms, mainly consisting of systemic inflammation and circulatory dysfunction. The main consequence of these two processes is neural dysfunction and multiple organ damages, notably, via oxidative stress and neurotoxic mediation under the mediation of central nervous system activation and blood-brain barrier disruption. Besides, the comorbidity-induced multiple organ damages will produce numerous damage-associated molecular patterns and consequently exacerbate the severity of the disease. At present, the prospective views are about operating artificial restriction for the peripheral immune system and achieving cross-tolerance among organs via altering immune cell composition to reduce inflammatory damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.