The technical principle of gas drainage using high-level directional extraction boreholes was analyzed. A range of overburden strata was stimulated for pressure relief during mining, the effects of different borehole parameters on gas flow in the goaf and gas concentration in the upper corner were compared, and a field test was conducted to analyze the effect and peculiarities of gas drainage. With the mining of the work plane, overburden mining fissures gradually develop forward and upward, showing a “saddle” shape along the coal seam. The fissures in the middle zone of the goaf are gradually compacted, and a gas accumulation zone is formed around the goaf. High-level directional extraction boreholes arranged in an ellipsoidal belt at the side of the air return can achieve efficient gas extraction in the roof fissure belt. Numerical simulation results showed that the height of the fully depressurized area was 65 m from the roof of the coal seam. In addition, three high-level directional extraction boreholes were drilled in the roof of the coal seam. The gas extraction concentration and gas extraction pure volume of these three boreholes first increased, then decreased, and finally tended to be stable. The sequence of their average values was borehole No.2 > No.3 (twice as much) and > No.1 (2.7 times as much), which are closely related to the evolution law of overburden mining fissures. The research results can provide a reference for the further study of gas extraction technology using high-level directional extraction boreholes in coal and gas outburst seams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.