Although endogenous hormones play an important role in flower bud differentiation and seed-filling, their effects on the flowering and fruiting of Glycyrrhiza uralensis Fisch. remain unknown. In the present study, we investigate the differences in the levels of endogenous hormones gibberellic acid (GA), abscisic acid (ABA), zeatin riboside (ZR), and indoleacetic acid (IAA) between the fruiting and seedless plants of G. uralensis Fisch. at different growth stages. We also determine the correlations of the endogenous hormone with the rates of flower and fruit falling, rate of empty seeds, rate of shrunken grains, and thousand kernel weight (TKW). The results demonstrate that the IAA and ZR levels of the flowering plants are significantly higher than those of the nonflowering plants at the flower bud differentiation stage. The GA and ABA levels of exfoliated inflorescence plants are considerably higher than those of the flowering and fruiting plants; the rates of falling flowers and fruit are negatively correlated with the IAA level and positively correlated with the ABA level. The ABA content of nonflowering plants is significantly higher than that of fruiting plants. The ZR:GA and IAA:ABA ratios are significantly positively correlated with TKW. The IAA:GA and IAA:ABA ratios are significantly negatively correlated with the rates of empty and shrunken seeds. Thus, we speculate that high IAA and ZR contents are good for flower bud differentiation and seed-filling, and low ABA and ZR contents are beneficial to flower bud development and seed-filling.
This study sought to clarify the antagonistic interactions of potassium (K) and calcium (Ca) to magnesium (Mg) under a deficiency of Mg in tomato. Tomato leaves and soil samples that had differing levels of Mg deficiency were collected to study the relationship between symptoms of Mg deficiency and contents of soil K and Ca. Four different Mg fertiliser treatments were conducted to analyse the regulation of Mg for soil K, Ca and Mg. The results showed the following: (1) The yield of tomatoes decreased significantly with an increase in Mg deficiency, and the yield of tomatoes with moderate (MD) and severe (SD) Mg deficiency decreased by 38.02% and 59.53%, respectively, compared with treatments without Mg deficiency (ND). (2) The cation saturation ratio of K + (CSRK + ) was significantly higher with MD and SD compared with ND, while the CSRMg 2+ was lower. The soil K/Mg and Ca/ Mg values were higher than the critical value of imbalance. (3) The soil exchangeable K, CSRK + , Ca/Mg and K/ Mg under SD increased significantly when compared with that under ND. (4) The content of Mg in tomato leaves and its yield were significantly negatively correlated with soil exchangeable K, CSRK + and K/Mg. (5) With the increase in application of Mg fertiliser, the soil exchangeable K content, K/Mg and CSRK + decreased significantly, while the Ca/K increased. The soil exchangeable K content, K/Mg and CSRK + with 90 kg/ha MgSO 4 and 234 kg/ha K 2 O applied (M2K1 treatment) were the lowest among all treatments. (6) The yields of tomatoes and uptake of Ca and Mg increased as supply of Mg increased. (7). Reducing the application of K was a much more efficient way to decrease soil K/Mg and restore cation imbalance than providing Mg fertiliser in calcareous soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.