This review paper summarizes current knowledge available for aviation operations related to meteorology and provides suggestions for necessary improvements in the measurement and prediction of weather-related parameters, new physical methods for numerical weather predictions (NWP), and next-generation integrated systems. Severe weather can disrupt aviation operations on the ground or in-flight. The most important parameters related to aviation meteorology are wind and turbulence, fog visibility (Vis) and ceiling, rain and snow amount and rates, icing, ice microphysical parameters, convection and precipitation intensity, microbursts, hail, and lightning. Measurements of these parameters are also functions of sensor response times and measurement thresholds in extreme weather conditions. In addition to these, airport environments can play an important role leading to intensification of extreme weather conditions or high impact weather events, e.g., anthropogenic ice fog. To observe meteorological parameters, new remote sensing platforms, namely wind LIDAR, sodars, radars, and geostationary satellites, and in-situ observations at the surface and in the cloud, as well as aircraft and Unmanned Aerial Vehicles (UAV) mounted sensors, are becoming more common. Because of prediction issues at smaller time and space scales (e.g., <1 km), meteorological forecasts from NWP models need to be continuously improved. Aviation weather forecasts also need to be developed to provide information that represents both deterministic and statistical approaches. In this review, we present available resources and issues for aviation meteorology and evaluate them for required improvements related to measurements, nowcasting, forecasting, and climate change, and emphasize future challenges.
A new multivariable-based diagnostic fog-forecasting method has been developed at NCEP. The selection of these variables, their thresholds, and the influences on fog forecasting are discussed. With the inclusion of the algorithm in the model postprocessor, the fog forecast can now be provided centrally as direct NWP model guidance. The method can be easily adapted to other NWP models. Currently, knowledge of how well fog forecasts based on operational NWP models perform is lacking. To verify the new method and assess fog forecast skill, as well as to account for forecast uncertainty, this fog-forecasting algorithm is applied to a multimodel-based Mesoscale Ensemble Prediction System (MEPS). MEPS consists of 10 members using two regional models [the NCEP Nonhydrostatic Mesoscale Model (NMM) version of the Weather Research and Forecasting (WRF) model and the NCAR Advanced Research version of WRF (ARW)] with 15-km horizontal resolution. Each model has five members (one control and four perturbed members) using the breeding technique to perturb the initial conditions and was run once per day out to 36 h over eastern China for seven months (February–September 2008). Both deterministic and probabilistic forecasts were produced based on individual members, a one-model ensemble, and two-model ensembles. A case study and statistical verification, using both deterministic and probabilistic measuring scores, were performed against fog observations from 13 cities in eastern China. The verification was focused on the 12- and 36-h forecasts. By applying the various approaches, including the new fog detection scheme, ensemble technique, multimodel approach, and the increase in ensemble size, the fog forecast accuracy was steadily and dramatically improved in each of the approaches: from basically no skill at all [equitable threat score (ETS) = 0.063] to a skill level equivalent to that of warm-season precipitation forecasts of the current NWP models (0.334). Specifically, 1) the multivariable-based fog diagnostic method has a much higher detection capability than the liquid water content (LWC)-only based approach. Reasons why the multivariable approach works better than the LWC-only method were also illustrated. 2) The ensemble-based forecasts are, in general, superior to a single control forecast measured both deterministically and probabilistically. The case study also demonstrates that the ensemble approach could provide more societal value than a single forecast to end users, especially for low-probability significant events like fog. Deterministically, a forecast close to the ensemble median is particularly helpful. 3) The reliability of probabilistic forecasts can be effectively improved by using a multimodel ensemble instead of a single-model ensemble. For a small ensemble such as the one in this study, the increase in ensemble size is also important in improving probabilistic forecasts, although this effect is expected to decrease with the increase in ensemble size.
Ice fog and frost occur commonly (at least 26% of the time) in the northern latitudes and Arctic regions during winter at temperatures usually less than about –15°C. Ice fog is strongly related to frost formation—a major aviation hazard in the northern latitudes. In fact, it may be considered a more dangerous event than snow because of the stronger aircraft surface adhesion compared to snow particles. In the winter of 2010/11, the Fog Remote Sensing and Modeling–Ice Fog (FRAM-IF) project was organized near Yellowknife International Airport, Northwest Territories, Canada, with the main goals of advancing understanding of ice fog microphysical and visibility characteristics, and improving its prediction using forecast models and remotesensing retrievals. Approximately 40 different sensors were used to measure visibility, precipitation, ice particle spectra, vertical thermodynamic profiles, and ceiling height. Fog coverage and visibility parameters were estimated using both Geostationary Operational Environmental Satellites (GOES) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. During this project, the inversion layer usually was below a height of 1.5 km. High humidity typically was close to the ground, frequently producing ice fog, frost, and light snow precipitation. At low temperatures, snow crystals can be swept away by a very low wind speed (∼1 m s−1). Ice fog during the project was not predicted by any forecast model. These preliminary results in the northern latitudes suggest that ice fog and frost studies, over the Arctic regions, can help us to better understand ice microphysical processes such as ice nucleation, visibility, and parameterizations of ice fog.
A vertical distribution formulation of liquid water content (LWC) for steady radiation fog was obtained and examined through the singular perturbation method. The asymptotic LWC distribution is a consequential balance among cooling, droplet gravitational settling, and turbulence in the liquid water budget of radiation fog. The cooling produces liquid water, which is depleted by turbulence near the surface. The influence of turbulence on the liquid water budget decreases with height and is more significant for shallow fogs than for deep fogs. The depth of the region of surface-induced turbulence can be characterized with a fog boundary layer (FBL). The behavior of the FBL bears some resemblance to the surface mixing layer in radiation fog. The characteristic depth of the FBL is thinner for weaker turbulence and stronger cooling, whereas if turbulence intensity increases or cooling rate decreases then the FBL will develop from the ground. The asymptotic formulation also reveals a critical turbulent exchange coefficient for radiation fog that defines the upper bound of turbulence intensity that a steady fog can withstand. The deeper a fog is, the stronger a turbulence intensity it can endure. The persistence condition for a steady fog can be parameterized by either the critical turbulent exchange coefficient or the characteristic depth of the FBL. If the turbulence intensity inside a fog is smaller than the turbulence threshold, the fog persists, whereas if the turbulence intensity exceeds the turbulence threshold or the characteristic depth of the FBL dominates the entire fog bank then the balance will be destroyed, leading to dissipation of the existing fog. The asymptotic formulation has a first-order approximation with respect to turbulence intensity. Verifications with numerical solutions and an observed fog event showed that it is more accurate for weak turbulence than for strong turbulence and that the computed LWC generally agrees with the observed LWC in magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.