Increasing evidence suggests that inflammatory microenvironment plays a critical role at different stages of tumor development. However, the molecular mechanisms of the interaction between inflammation and proliferation of cancer cells remain poorly defined. Here we reported the inhibitory effects of oroxylin A on the inflammation-stimulated proliferation of tumor cells and delineated the mechanism of its action. The results indicated that treatment with oroxylin A inhibited NF-κB p65 nuclear translocation and phosphorylation of IκBα and IKKα/β in both human colon tumor HCT116 cells and human monocytes THP-1 cells. In addition, in THP-1 cells, oroxylin A significantly suppressed lipopolysaccharide (LPS)-induced secretion of prototypical proinflammatory cytokine IL-6 but not IL-1β, and it was confirmed at the transcription level. Moreover, oroxylin A inhibited the proliferation of HCT116 cells stimulated by LPS-induced THP-1 cells in co-culture microenvironment. In summary, oroxylin A modulated NF-κB signaling pathway involved in inflammation-induced cancer initiation and progression and therefore could be a potential cancer chemoprevention agent for inflammation-related cancer.
Both autophagy and melatonin play important roles in plant development and stress response. However, the direct correlation between autophagy and melatonin as well as the underlying mechanism remains elusive in plants. In this study, we discovered that the expression of three autophagy‐associated genes (MeATG8b, 8c, and 8e) and autophagic activity were induced by exogenous melatonin treatment in cassava. In addition, three melatonin biosynthesis enzymes (tryptophan decarboxylase 2 (MeTDC2), N‐aceylserotonin O‐methyltransferase 2 (MeASMT2), and MeASMT3) positively regulate endogenous melatonin level and autophagic activity. Further investigation showed that these melatonin biosynthesis enzymes interacted with MeATG8b/8c/8e in vivo and in vitro. Consistently, MeTDC2, MeASMT2, and MeASMT3 also positively regulate endogenous melatonin level and autophagic activity in cassava. Notably, overexpression of MeATG8b, 8c, and 8e facilitated the protein expression level of MeTDC2, MeASMT2, and MeASMT3 in vivo. Taken together, melatonin synthesis enzymes (MeTDC2, MeASMT2/3) interact with MeATG8b/8c/8e and thus coordinate the dynamics of melatonin biosynthesis and autophagic activity in cassava, highlighting the links between melatonin biosynthesis and autophagic activity in cassava.
SUMMARY
Heat shock protein 90 (HSP90) is involved in plant growth and various stress responses via regulating protein homeostasis. Autophagy keeps cellular homeostasis by recycling the components of cellular cytoplasmic constituents. Although they have similar effects on cellular protein homeostasis, the direct association between HSP90 and autophagy signaling remains unclear in plants, especially in tropical crops. In this study, the correlation between HSP90 and autophagy signaling was systematically analyzed by protein–protein interaction in cassava, one of the most important economy fruit in tropic. In addition, their effects on plant disease response and underlying mechanisms in cassava were investigated by functional genomics and genetic phenotype assay. The potential MeHSP90.9‐MeSGT1‐MeRAR1 chaperone complex interacts with MeATGs and subsequently triggers autophagy signaling, conferring improved disease resistance to cassava bacterial blight (CBB). On the contrary, HSP90 inhibitor and autophagy inhibitor decreased disease resistance against CBB in cassava, and autophagy may be involved in the potential MeHSP90.9‐MeSGT1‐MeRAR1 chaperone complex‐mediated multiple immune responses. This study highlights the precise modulation of autophagy signaling by potential MeHSP90.9‐MeSGT1‐MeRAR1 chaperone complex in autophagy‐mediated disease resistance to CBB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.