In order to represent the mechanical response laws of high-modulus asphalt pavement (HMAP) faithfully and objectively, the viscoelasticity of high-modulus asphalt mixture (HMAM) was considered, and the viscoelastic mechanical responses were calculated systematically based on moving load by numerical simulations. The performances of the HMAP in resistance to the deformation and the cracking at the bottom layer were compared with the ordinary asphalt pavement. Firstly, Lubao and Honeywell 7686 (H7686) were selected as the high modulus modifiers. The laboratory investigations of Asphalt mix-70 penetration, Asphalt mix-SBS (styrene-butadiene-styrene), HMAM-Lubao and HMAM-H7686 were carried out by dynamic modulus tests and wheel tracking tests. The conventional performances related to the purpose of using the HMAM were indicated. The master curves of the storage moduli were obtained and the viscoelastic parameters were fitted based on viscoelastic theories. Secondly, 3D pavement models based on moving loads for the viscoelastic structures were built using the non-linear finite element software ABAQUS. The wheel path was discretized in time and space to apply the Haversine wave load, and then the mechanical responses of four kinds of asphalt pavement were calculated. Finally, the sensitivity analysis was carried out. The results showed that the addition of the high modulus modifiers can improve the resistance to high-temperature rutting of the pavements. Except for the tensile strain and stress at the bottom of the underlayer, other responses decreased with the increases of the dynamic moduli and the change laws of the tensile strain and stress were affected by the range of the dynamic modulus. The tensile stress at the bottom of the asphalt layer would be too large if the modulus of the layer were too large, and a larger tensile strain would result. Therefore, the range of the modulus must be restricted to avoid the cracking due to excessive tension when using the HMAM. The resistance of the HMAP to deformation was better and the HMAP was less sensitive to load changes and could better withstand the adverse effects inflicted by heavy loads.
The pavement subbase is an important part of the pavement structure, and it is also the structural layer which is prone to appear quality problems in the pavement. As the main bearing layer, the pavement subbase plays a connecting role between the subgrade and the pavement. The practical engineering experience shows that strictly control of compaction degree can make the pavement structure to reach stable strength and guarantee the project quality. In this paper, the cement and soil curing agent are used to stabilize the natural gravel soil without sand and gravel area, and the Cement stabilized gravel soil is obtained by the design ratio. The cement stabilized gravel soil specimens are compacted with the vibratory compaction method in different compactness ,which is more suitable with the actual construction compaction mechanism. Then the 7d unconfined compressive strength of under the hierarchical compaction standard is measured, and the change relationships between the degree of compaction and the strength of the subbase is observed by the analysis of data. Finally, it is concluded that the strength of the subbase increases with the increase of the compaction degree in a certain compaction range, and the strength of the subbase can be improved by increasing the compaction degree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.