Summary
Nuclear factor κB (NF-κB) is an anti-apoptotic transcription factor. We show that the anti-apoptotic actions of NF-κB are mediated by hydrogen sulfide (H2S) synthesized by cystathionine gamma-lyase (CSE). TNFα treatment triples H2S generation by stimulating binding of SP1 to the CSE promoter. H2S generated by CSE stimulates DNA binding and gene activation of NF-κB, processes that are abolished in CSE deleted mice. As CSE deletion leads to decreased glutathione levels, resultant oxidative stress may contribute to alterations in CSE mutant mice. H2S acts by sulfhydrating the p65 subunit of NF-κB at cysteine-38, which promotes its binding to the co-activator ribosomal protein S3 (RPS3). Sulfhydration of p65 predominates early following TNFα treatment, then declines and is succeeded by a reciprocal enhancement of p65 nitrosylation. Anti-apoptotic influences of NF-κB, which are markedly diminished in CSE mutant mice. Thus, sulfhydration of NF-κB appears to be a physiologic determinant of its anti-apoptotic transcriptional activity.
Hydrogen sulfide (H(2)S) has recently emerged as a mammalian gaseous messenger molecule, akin to nitric oxide and carbon monoxide. H(2)S is predominantly formed from Cys or its derivatives by the enzymes cystathionine β-synthase and cystathionine γ-lyase. One of the mechanisms by which H(2)S signals is by sulfhydration of reactive Cys residues in target proteins. Although analogous to protein nitrosylation, sulfhydration is substantially more prevalent and usually increases the catalytic activity of targeted proteins. Physiological actions of sulfhydration include the regulation of inflammation and endoplasmic reticulum stress signalling as well as of vascular tension.
Glutathione (GSH) and bilirubin are prominent endogenous antioxidant cytoprotectants. Despite tissue levels that are thousands of times lower than GSH, bilirubin is effective because of the biosynthetic cycle wherein it is generated from biliverdin by biliverdin reductase (BVR). When bilirubin acts as an antioxidant, it is oxidized to biliverdin, which is immediately reduced by BVR to bilirubin. Why does the body employ both of these 2 distinct antioxidant systems? We show that the water-soluble GSH primarily protects water soluble proteins, whereas the lipophilic bilirubin protects lipids from oxidation. Mice with deletion of heme oxygenase-2, which generates biliverdin, display greater lipid than protein oxidation, while the reverse holds for GSH depletion. RNA interference depletion of BVR increases oxidation of lipids more than protein. Depletion of BVR or GSH augments cell death in an oxidant-specific fashion.apoptosis ͉ biliverdin ͉ cell death ͉ heme oxygenase ͉ neuroprotection
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.