Abstract-Bacterial meningitis is still a life-threatening disease, and early diagnosis of pathogen can be crucial to improving survival rate. Using the surface-enhanced Raman scattering (SERS) platform developed by our group, the pathogens can be differentiated on the basis of their SERS spectra which are believed to related to their surface chemical components. We collected the SERS spectra of ten pathogens: Streptococcus pneumoniae(Spn), Streptococcus agalactiae (group B streptococcus, GBS), Staphylococcus aureus (Sa), Pseudomonas aeruginosae (Psa), Acinetobacter baumannii (Ab), Klebsiella pneumoniae (Kp), Neisseria meningitidis (Nm), Listeria monocytogenes (Lm), Haemophilus influenzae (Hi), and Escherichia coli (E.coli). These samples were obtained from patients in National Taiwan University Hospital, and were believed to represent the real diversity of clinical pathogens. Using the support vector machine (SVM) method, the classification accuracy can achieve around 88%. However, we noted that SVM cannot distinguish between [E.coli, Kp] and [Sa, Hi] due to the fact that the global features of these two groups of pathogens are very similar. We therefore incorporated a classification tree method that can focus on local differences in classification rules. This improved the accuracy to 90%. To get a better understanding of the SERS signals, we also compared several other classification methods. In addition, rule extraction method which attempts to explain why classifier fail or succeed is also discussed. Our preliminary results are interesting, encouraging, and await more thorough investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.