Tumor-draining lymph nodes (TDLN) contain sensitized T cells with the phenotype CD62 L-selectinlow (CD62Llow) that can be activated ex vivo with anti-CD3 mAb and IL-2 to acquire potent dose-dependent effector function manifested upon adoptive transfer to secondary tumor-bearing hosts. In this study advanced tumor models were used as a stringent comparison of efficacy for the CD62Llow subset, comprising 5–7% of the TDLN cells, vs the total population of TDLN cells following culture in high dose IL-2 (100 U/ml). During the 9-day activation period the total number of CD8+ T cells increased 1500-fold, with equivalent proliferation in the CD62Llow vs the total TDLN cell cultures. Adoptive transfer of activated CD62Llow cells eliminated 14-day pulmonary metastases and cured 10-day s.c. tumors, whereas transfer of maximally tolerated numbers of total TDLN cells was not therapeutic. Despite their propagation in a high concentration of IL-2, the hyperexpanded CD62Llow subset of TDLN cells functioned in vivo without exogenous IL-2, and CD8+ T cells demonstrated relative helper independence. Moreover, the anti-tumor response was specific for the sensitizing tumor, and long term memory was established. The facile enrichment of tumor-reactive TDLN T cells, based on the CD62Llow phenotype, circumvents the need for prior knowledge of the relevant tumor Ags. Coupling the isolation of pre-effector T cells with rapid ex vivo expansion to >3 logs could overcome some of the shortcomings of active immunotherapy or in vivo cytokine treatment, where selective robust expansion of effector cells has been difficult to achieve.
Recombinant adeno-associated virus (rAAV) vectors have been shown to be useful for efficient gene delivery to a variety of dividing and nondividing cells. Mechanisms responsible for the long-term, persistent expression of the rAAV transgene are not well understood. In this study we investigated the kinetics of rAAV-mediated human factor IX (hFIX) gene transfer into human primary myoblasts and myotubes. Transduction of both myoblasts and myotubes occured with a similar and high efficiency. After 3 to 4 weeks of transduction, rAAV with a cytomegalovirus (CMV) promoter showed 10-to 15-fold higher expression than that with a musclespecific creatine kinase enhancer linked to -actin promoter. Factor IX expression from transduced myoblasts as well as myotubes reached levels as high as approximately 2 g of hFIX/10 6 cells/day. Southern blot analyses of high-molecular-weight (HMW) cellular genomic and Hirt DNAs isolated from rAAV/CMVhFIXm1-transduced cells showed that the conversion of single-stranded vector genomes to double-stranded DNA forms, but not the level of the integrated forms in HMW DNA, correlated with increasing expression of the transgene. Together, these results indicate that rAAV can transduce both proliferating and terminally differentiated muscle cells at about the same efficiency, that expression of transgenes increases linearly over their lifetime with no initial lag phase, and that increasing expression correlates with the appearance of double-stranded episomal rAAV genomes. Evidence showing that the rAAV virions can copackage hFIX, presumably nonspecifically, was also obtained.
Because dendritic cells (DC) are critically involved in both initiating primary and boosting secondary host immune responses, attention has focused on the use of DC in vaccine strategies to enhance reactivity to tumor-associated antigens. We have reported previously the induction of major histocompatibility complex class II-specific T-cell responses after stimulation with tumor antigen-pulsed DC in vitro. The identification of in vitro conditions that would generate large numbers of DC with more potent antigen-presenting cell (APC) capacity would be an important step in the further development of clinical cancer vaccine approaches in humans. We have focused attention on identifying certain exogenous cytokines added to DC cultures that would lead to augmented human DC number and function. DC progenitors from peripheral blood mononuclear cells (PBMC) were enriched by adherence to plastic, and the adherent cells were then cultured in serum-free XVIVO-15 medium (SFM) for 7 days with added granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). At day 7, cultures contained cells that displayed the typical phenotypic and morphologic characteristics of DC. Importantly, we have found that the further addition of tumor necrosis factor α (TNFα) at day 7 resulted in a twofold higher yield of DC compared with non–TNFα-containing DC cultures at day 14. Moreover, 14-day cultured DC generated in the presence of TNFα (when added at day 7) demonstrated marked enhancement in their capacity to stimulate a primary allogeneic mixed leukocyte reaction (8-fold increase in stimulation index [SI]) as well as to present soluble tetanus toxoid and candida albicans (10- to 100-fold increases in SI) to purified CD4+ T cells. These defined conditions allowed for significantly fewer DC and lower concentrations of soluble antigen to be used for the pulsing of DC to efficiently trigger specific T-cell proliferative responses in vitro. When compared with non–TNFα-supplemented cultures, these DC also displayed an increased surface expression of CD83 as well as the costimulatory molecules, CD80 and CD86. Removal of TNFα from the DC cultures after 2 or 4 days reduced its enhancing effect on DC yield, phenotype, and function. Thus, the continuous presence of TNFα over a 7-day period was necessary to achieve the maximum enhancing effect observed. Collectively, our findings point out the importance of exogenous TNFα added to cultures of cytokine-driven human DC under serum-free conditions, which resulted in an enhanced number and function of these APC. On the basis of these results, we plan to initiate clinical vaccine trials in patients that use tumor-pulsed DC generated under these defined conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.