The Crab Nebula is a bright source of gamma-rays powered by the Crab Pulsar's rotational energy, through the formation and termination of a relativistic electron-positron wind. We report the detection of γ-rays from this source with energies from 5 × 10−4 to 1.1 petaelectronvolts (PeV), with a spectrum showing gradual steepening over three energy decades. The ultra-high-energy photons imply the presence of a PeV electron accelerator (a pevatron) in the nebula, with an acceleration rate exceeding 15% of the theoretical limit. We constrain the pevatron's size between 0.025 and 0.1 pc, and magnetic field ≈110 μG. The production rate of PeV electrons, 2.5 × 1036 erg s−1, constitutes 0.5% of the pulsar spin-down luminosity, although we cannot exclude a contribution of PeV protons to the production of the highest energy γ-rays.
Some gamma-ray bursts (GRBs) have a tera–electron volt (TeV) afterglow, but the early onset of this has not been observed. We report observations with the Large High Altitude Air Shower Observatory of the bright GRB 221009A, which serendipitously occurred within the instrument field of view. More than 64,000 photons >0.2 TeV were detected within the first 3000 seconds. The TeV flux began several minutes after the GRB trigger, then rose to a peak about 10 seconds later. This was followed by a decay phase, which became more rapid ~650 seconds after the peak. We interpret the emission using a model of a relativistic jet with half-opening angle ~0.8°. This is consistent with the core of a structured jet and could explain the high isotropic energy of this GRB.
The spectral hardenings of cosmic ray nuclei above ∼ 200 GV followed by softenings around 10 TV, the knee of the all-particle spectrum around PeV energies, as well as the pattern change of the amplitude and phase of the large-scale anisotropies around 100 TeV indicate the complexities of the origin and transportation of Galactic cosmic rays. It has been shown that nearby source(s) are most likely to be the cause of such spectral features of both the spectra and the anisotropies. In this work, we study the anisotropy features of different mass composition (or mass groups) of cosmic rays in this nearby source model. We show that even if the spectral features from the nearby source component is less distinctive compared with the background component from e.g., the population of distant sources, the anisotropy features are more remarkable to be identified. Measurements of the anisotropies of each mass composition (group) of cosmic rays by the space experiments such as DAMPE and HERD and the ground-based experiments such as LHAASO in the near future are expected to be able to critically test this scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.