Background The COVID-19 pandemic has imposed a large, initially uncontrollable, public health crisis both in the United States and across the world, with experts looking to vaccines as the ultimate mechanism of defense. The development and deployment of COVID-19 vaccines have been rapidly advancing via global efforts. Hence, it is crucial for governments, public health officials, and policy makers to understand public attitudes and opinions towards vaccines, such that effective interventions and educational campaigns can be designed to promote vaccine acceptance. Objective The aim of this study was to investigate public opinion and perception on COVID-19 vaccines in the United States. We investigated the spatiotemporal trends of public sentiment and emotion towards COVID-19 vaccines and analyzed how such trends relate to popular topics found on Twitter. Methods We collected over 300,000 geotagged tweets in the United States from March 1, 2020 to February 28, 2021. We examined the spatiotemporal patterns of public sentiment and emotion over time at both national and state scales and identified 3 phases along the pandemic timeline with sharp changes in public sentiment and emotion. Using sentiment analysis, emotion analysis (with cloud mapping of keywords), and topic modeling, we further identified 11 key events and major topics as the potential drivers to such changes. Results An increasing trend in positive sentiment in conjunction with a decrease in negative sentiment were generally observed in most states, reflecting the rising confidence and anticipation of the public towards vaccines. The overall tendency of the 8 types of emotion implies that the public trusts and anticipates the vaccine. This is accompanied by a mixture of fear, sadness, and anger. Critical social or international events or announcements by political leaders and authorities may have potential impacts on public opinion towards vaccines. These factors help identify underlying themes and validate insights from the analysis. Conclusions The analyses of near real-time social media big data benefit public health authorities by enabling them to monitor public attitudes and opinions towards vaccine-related information in a geo-aware manner, address the concerns of vaccine skeptics, and promote the confidence that individuals within a certain region or community have towards vaccines.
The U.S. has merely 4% of the world population, but contains 25% of the world’s COVID-19 cases. Since the COVID-19 outbreak in the U.S., Massachusetts has been leading other states in the total number of COVID-19 cases. Racial residential segregation is a fundamental cause of racial disparities in health. Moreover, disparities of access to health care have a large impact on COVID-19 cases. Thus, this study estimates racial segregation and disparities in testing site access and employs economic, demographic, and transportation variables at the city/town level in Massachusetts. Spatial regression models are applied to evaluate the relationships between COVID-19 incidence rate and related variables. This is the first study to apply spatial analysis methods across neighborhoods in the U.S. to examine the COVID-19 incidence rate. The findings are: (1) Residential segregations of Hispanic and Non-Hispanic Black/African Americans have a significantly positive association with COVID-19 incidence rate, indicating the higher susceptibility of COVID-19 infections among minority groups. (2) Non-Hispanic Black/African Americans have the shortest drive time to testing sites, followed by Hispanic, Non-Hispanic Asians, and Non-Hispanic Whites. The drive time to testing sites is significantly negatively associated with the COVID-19 incidence rate, implying the importance of the accessibility of testing sites by all populations. (3) Poverty rate and road density are significant explanatory variables. Importantly, overcrowding represented by more than one person per room is a significant variable found to be positively associated with COVID-19 incidence rate, suggesting the effectiveness of social distancing for reducing infection. (4) Different from the findings of previous studies, the elderly population rate is not statistically significantly correlated with the incidence rate because the elderly population in Massachusetts is less distributed in the hotspot regions of COVID-19 infections. The findings in this study provide useful insights for policymakers to propose new strategies to contain the COVID-19 transmissions in Massachusetts.
Employing a bona fide network perspective, this study investigates the network processes and outcomes of organizational collaborative networks before and following Typhoon Haiyan, taking into account the influences of network factors, organizational attributes, and environmental exigencies. The analysis from an online survey with relief organizations and those organizations’ Twitter data showed the consistent influence of past relationships on the formation of subsequent relationships after the disaster. In the on-the-ground network, a few highly active organizations stood out and engaging in multiple modes of communication with resource contacts was seen as an adaptive practice that helped organizations to build resource ties after the typhoon. In the online domain, organizations developed post-typhoon networks by means of becoming directly linked to one another and becoming equally resourceful in building their ties. In addition, different forms of resilience were observed as outcomes of collaborative networks. Findings of this study present theoretical and practical implications by unveiling the network dynamics of contemporary humanitarian actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.