In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.
We have studied the electrostatic screening effect of NaCl solutions on the interactions between anionic lipid bilayers in the fluid lamellar phase using a Poisson–Boltzmann-based mean-field approach with constant charge and constant potential limiting charge regulation boundary conditions. The full DLVO potential, including the electrostatic, hydration and van der Waals interactions, was coupled to thermal bending fluctuations of the membranes via a variational Gaussian Ansatz. This allowed us to analyze the coupling between the osmotic pressure and the fluctuation amplitudes and compare them both simultaneously with their measured dependence on the bilayer separation, determined by the small-angle X-ray scattering experiments. High-structural resolution analysis of the scattering data revealed no significant changes of membrane structure as a function of salt concentration. Parsimonious description of our results is consistent with the constant charge limit of the general charge regulation phenomenology, with fully dissociated lipid charge groups, together with a 6-fold reduction of the membranes’ bending rigidity upon increasing NaCl concentration.
We analyze van der Waals interactions between two rigid polymers with sequence-specific, anisotropic polarizabilities along the polymer backbones, so that the dipole moments fluctuate parallel to the polymer backbones. Assuming that each polymer has a quenched-in polarizability sequence which reflects, for example, the polynucleotide sequence of a double-stranded DNA molecule, we study the van der Waals interaction energy between a pair of such polymers with rod-like structure for the cases where their respective polarizability sequences are (i) distinct and (ii) identical, with both zero and non-zero correlation length of the polarizability correlator along the polymer backbones in the latter case. For identical polymers, we find a novel r −5 scaling behavior of the van der Waals interaction energy for small inter-polymer separation r, in contradistinction to the r −4 scaling behavior of distinct polymers, with furthermore a pronounced angular dependence favoring attraction between sufficiently aligned identical polymers. Such behavior can assist the molecular recognition between polymers.
A self-consistent theory is proposed for the general problem of interacting undulating fluid membranes subject to the constraint that they do not interpenetrate. We implement the steric constraint via an exact functional integral representation, and through the use of a saddle-point approximation transform it into a novel effective steric potential. The steric potential is found to consist of two contributions: one generated by zero mode fluctuations of the membranes, and the other by thermal bending fluctuations. For membranes of cross-sectional area S, we find that the bending fluctuation part scales with the inter-membrane separation d as d −2 for d √ S, but crosses over to d −4 scaling for d √ S, whereas the zero mode part of the steric potential always scales as d −2 . For membranes interacting exclusively via the steric potential, we obtain closed-form expressions for the effective interaction potential and for the rms undulation amplitude σ, which becomes small at low temperatures T and/or large bending stiffnesses κ. Moreover, σ scales as d for d √ S, but saturates at kBT S/κ for d √ S. In addition, using variational Gaussian theory, we apply our self-consistent treatment to study inter-membrane interactions subject to three different types of potential: (i) the Moreira-Netz potential for a pair of strongly charged membranes with an intervening solution of multivalent counterions, (ii) an attractive square well, (iii) the Morse potential, and (iv) a combination of hydration and van der Waals interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.