We present a unified multidimensional variational framework for the space discontinuous Galerkin method for elastic wave propagation in anisotropic and piecewise homogeneous media. Based on an elastic wave oriented formulation and using a tensorial formalism, the proposed framework allows a better understanding of the physical meaning of the terms involved in the discontinuous Galerkin method. The unified variational framework is written for first-order velocity-stress wave equations. An uncoupled upwind numerical flux and two coupled upwind numerical fluxes using respectively the Voigt and the Reuss averages of elastic moduli are defined. Two numerical fluxes that are exact solutions of the Riemann problem on physical interfaces are also developed and analyzed in the 1D case. The implemented solvers are then applied to different elastic media, especially to polycrystalline materials that present a particular case of piecewise homogeneous media. The use of the three upwind numerical fluxes, which only solve approximately the Riemann problem at element interfaces, is investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.