Based on finite-difference time-domain simulation of the propagation characteristics of surface plasmon polaritons (SPPs) in optical circuits made from metal gap waveguides (MGWs) with nanometric gap widths, we theoretically demonstrate that two structures that consist of splitting and recombining MGWs and of coupling MGWs can be used as nanoscale Mach-Zehnder interferometers. MGW arrays show capabilities for array imaging and for controlling the flow of SPPs. Other potential applications of coupling MGWs, as SPP switches, directional couplers, and even as a nanoscale counterpart for observing linear and nonlinear dynamic behavior of electromagnetic fields, are also predicted and discussed. Our results point to an interesting way to manipulate optical signals and provide efficient sensing in nanophotonic architectures.
Abstract-Vehicle-to-grid provides a viable approach that feeds the battery energy stored in electric vehicles (EVs) back to the power grid. Meanwhile, since EVs are mobile, the energy in EVs can be easily transported from one place to another. Based on these two observations, we introduce a novel concept called EV energy network for energy transmission and distribution using EVs. We present a concrete example to illustrate the usage of an EV energy network, and then study the optimization problem of how to deploy energy routers in an EV energy network. We prove that the problem is NP-hard and develop a greedy heuristic solution. Simulations using real-world data shows that our method is efficient.
Vertebrate interferon (IFN) response defenses against viral infection through the induction of hundreds of IFN-stimulated genes (ISGs). Most ISGs are conserved across vertebrates; however, little is known about the species-specific ISGs. In this study, we reported that grass carp reovirus (GCRV)-induced gene 1 (Gig1), previously screened as a virus-induced gene from UV-inactivated GCRV-infected crucian carp (Carassius auratus) blastulae embryonic (CAB) cells, was a typical fish ISG, which was significantly induced by intracellular poly(I:C) through retinoic acid-inducible gene I (RIG-I)-like receptors-triggered IFN signaling pathway. Transient or stable overexpression of Gig1 prevented GCRV replication efficiently in cultured fish cells. Strikingly, Gig1 homologs were found exclusively in fish species forming a novel gene family. These results illustrate that there exists a Gig1 gene family unique to fish species and the founding gene mediates a novel fish IFN antiviral pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.