Coordinatively unsaturated ferrous (CUF) sites confined in nanosized matrices are active centers in a wide range of enzyme and homogeneous catalytic reactions. Preparation of the analogous active sites at supported catalysts is of great importance in heterogeneous catalysis but remains a challenge. On the basis of surface science measurements and density functional calculations, we show that the interface confinement effect can be used to stabilize the CUF sites by taking advantage of strong adhesion between ferrous oxides and metal substrates. The interface-confined CUF sites together with the metal supports are active for dioxygen activation, producing reactive dissociated oxygen atoms. We show that the structural ensemble was highly efficient for carbon monoxide oxidation at low temperature under typical operating conditions of a proton-exchange membrane fuel cell.
We report that the Kondo effect exerted by a magnetic ion depends on its chemical environment. A cobalt phthalocyanine molecule adsorbed on an Au111 surface exhibited no Kondo effect. Cutting away eight hydrogen atoms from the molecule with voltage pulses from a scanning tunneling microscope tip allowed the four orbitals of this molecule to chemically bond to the gold substrate. The localized spin was recovered in this artificial molecular structure, and a clear Kondo resonance was observed near the Fermi surface. We attribute the high Kondo temperature (more than 200 kelvin) to the small on-site Coulomb repulsion and the large half-width of the hybridized d-level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.