Cyfluthrin, a typical type II pyrethroid pesticide, is widely used in house hygiene and agricultural pest control. Several epidemiological investigations have found that maternal pyrethroid exposure is connected to adverse pregnancy outcomes. However, the underlying mechanisms remain to be elucidated. Thus, we evaluated the effect of cyfluthrin exposure during pregnancy on placenta development in vivo. In the current study, Pregnant SD rats were randomly divided into four groups and administered 6.25, 12.5, and 25 mg/kg body weight cyfluthrin or an equivalent volume of corn oil by gavage from GD0 to GD19. The results have shown that gestational exposure to cyfluthrin exerted no effect on the fetal birth defect, survival to PND4, or fetal resorption and death. However, live fetuses and implantation sites significantly decreased in the high-dose cyfluthrin-treated group. Moreover, a significant reduction in placenta weight and diameter was observed in rats. Correspondingly, the fetal weight and crown-rump length from dams exposed to cyfluthrin were reduced. Cyfluthrin-treat groups, the total area of the placenta, spongiotrophoblast area, and labyrinth area had abnormal changes. Meanwhile, the area of blood sinusoid and CD34-positive blood vessel numbers in the placenta were considerably reduced, as well as abnormal expression of placental pro-angiogenic and anti-angiogenic factors in dams exposed to cyfluthrin. Further observation by transmission electron microscopy revealed significant changes in the ultrastructure of the medium-dose and high-dose groups. Additional experiments showed gestational exposure to cyfluthrin inhibited proliferation and induced apoptosis of placentas, as decreased PCNA-positive cells and increased TUNEL-positive cells. Furthermore, western blot and qPCR analysis revealed that gestational exposure to medium-dose and high-dose cyfluthrin increased the expression of GRP78, and three downstream mRNA and proteins (p-eIF2α, ATF4, and CHOP) of the PERK signaling, indicating that endoplasmic reticulum (ER) stress-mediated PERK/eIF2α/ATF4/CHOP signaling pathway in rat placentas was activated. Our study demonstrated that gestational exposure to cyfluthrin leads to placental developmental disorder, which might be associated with ER stress-mediated PERK signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.